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Building Toward MDPs
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Markov Chains

Markov chain: sequence of random variables 𝑆0, 𝑆1, 𝑆2, … , with 
the same domain 𝒮 s.t. Markov property holds:
  
 for all 𝑡 ≥ 0.  𝑃 𝑆𝑡+1 𝑆𝑡 , 𝑆𝑡−1, … = 𝑃(𝑆𝑡+1 ∣ 𝑆𝑡).

“The future is independent of the past given the present.”
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Markov Chains

Markov chain: sequence of random variables 𝑆0, 𝑆1, 𝑆2, … , with 
the same domain 𝒮 s.t. Markov property holds:
  
 for all 𝑡 ≥ 0.  𝑃 𝑆𝑡+1 𝑆𝑡 , 𝑆𝑡−1, … = 𝑃(𝑆𝑡+1 ∣ 𝑆𝑡).

“The future is independent of the past given the present.”

Each 𝑆𝑡 represents a state

The state space
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Markov Chains

Markov chain: sequence of random variables 𝑆0, 𝑆1, 𝑆2, … , with 
the same domain 𝒮 s.t. Markov property holds:
  
 for all 𝑡 ≥ 0.  𝑃 𝑆𝑡+1 𝑆𝑡 , 𝑆𝑡−1, … = 𝑃(𝑆𝑡+1 ∣ 𝑆𝑡).

“The future is independent of the past given the present.”

Assuming discrete 
time
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Markov Chains

Transition distribution for time 𝑡: 𝑃𝑡 𝑆𝑡+1 𝑆𝑡

Stationary Markov chain: for all 𝑡, 𝑡′, 𝑃𝑡 = 𝑃𝑡′.

“The transition distribution doesn’t change over time.”

Notation for stationary MCs omits subscript: 𝑃 𝑆𝑡+1 𝑆𝑡

a.k.a. time-homogeneous
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Markov Chain PGM
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Example
How would we represent this 
scenario as a Markov Chain?
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Markov Reward Processes

Markov reward process: Markov chain + reward function

Reward function: 𝑅: 𝒮 × 𝒮 →  ℝ   (higher is better)

R 𝑠𝑡 , 𝑠𝑡+1 ↦ 𝑟 is the scalar reward

𝑅(𝑆𝑡 , 𝑆𝑡+1) is a random variable
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MRP PGM
(Influence Diagram)

Influence diagrams are 
an extension of Bayes 

nets that include 
“reward nodes” 

(diamonds)
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Time Horizons

• Finite horizon: 𝑆0, 𝑆1, … , 𝑆𝐻.
• Infinite horizon: 𝑆0, 𝑆1, …

𝐻 is the horizon
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Time Horizons

• Finite horizon: 𝑆0, 𝑆1, … , 𝑆𝐻.
• Infinite horizon: 𝑆0, 𝑆1, …

• Indefinite horizon:
• Let 𝒟 ⊂ 𝒮 be a set of done states.
• The process terminates whenever a state in 𝒟 is encountered.

a.k.a. sink states, terminal states, 
absorbing states
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Time Horizons

• Finite horizon: 𝑆0, 𝑆1, … , 𝑆𝐻.
• Infinite horizon: 𝑆0, 𝑆1, …

• Indefinite horizon:
• Let 𝒟 ⊂ 𝒮 be a set of done states.
• The process terminates whenever a state in 𝒟 is encountered.

For indefinite horizon, 
usually assume that we 
will reach a done state 

with probability 1.
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Example

How would we represent this 
scenario as an MRP?
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MRP 1 MRP 2
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Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”
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Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

What would each agent’s utility look like?

I need money now! 
ASAP!!!

If I get money now, 
a bully would take 
it. Better to wait.
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Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

What would each agent’s utility look like?

I just want to know 
what it feels like to 
score big. Just once 

is enough.

I really, really don’t 
want to fail.
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Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a 
rational agent should prefer the one that has larger expected 
utility, where the expectation is over (state, reward) trajectories.
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Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a 
rational agent should prefer the one that has larger expected 
utility, where the expectation is over (state, reward) trajectories.

Note: for the moment, we’re assuming 
some distribution over initial states.
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Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a 
rational agent should prefer the one that has larger expected 
utility, where the expectation is over (state, reward) trajectories.

Seems reasonable, but is this the only option?
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Preferences, Axioms of Utility Theory

• Suppose an agent has preferences:
• 𝐴 > 𝐵 (the agent prefers 𝐴 over 𝐵)
• 𝐴 ~ 𝐵 (the agent is indifferent)

• 𝐴 ≥ 𝐵 (the agent prefers 𝐴 over 𝐵 or is indifferent)

What are A and B here? 
Formally: lotteries.

For our purposes: MRPs.
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Preferences, Axioms of Utility Theory

• Suppose an agent has preferences:
• 𝐴 > 𝐵 (the agent prefers 𝐴 over 𝐵)
• 𝐴 ~ 𝐵 (the agent is indifferent)

• 𝐴 ≥ 𝐵 (the agent prefers 𝐴 over 𝐵 or is indifferent)

• Axioms of utility theory:
• Orderability: exactly one of 𝐴 > 𝐵, 𝐵 > 𝐴, or 𝐴 ~ 𝐵 holds for all 𝐴, 𝐵.
• Transitivity: if 𝐴 > 𝐵 and 𝐵 > 𝐶 then 𝐴 > 𝐶.
• Four other more technical ones using lottery definition: continuity, 

substitutability, monotonicity, decomposability.

Tom Silver - Princeton University - Fall 2025 23



Preferences, Axioms of Utility Theory

Theorem (von Neumann & Morgenstern, 1944): Axioms of utility 
⇒ maximum expected utility principle.

So, if we accept the axioms, then MEU is what we need.
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Our Agent’s Utility vs Our Own

Value Alignment Problem
• Need to be very careful & 

thoughtful about utility 
definitions!

• Difficult to capture all societal 
norms

• Famous example: paperclip 
maximizer (Bostrom 2003)

• Right: another example 
(OpenAI 2016)
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Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a 
rational agent should prefer the one that has larger expected 
utility, where the expectation is over (state, reward) trajectories.

Note: for the moment, we’re 
assuming some distribution over 

initial states.

But MRPs don’t have an initial 
state distribution! Let’s revisit…

Tom Silver - Princeton University - Fall 2025 26



MRP 1 MRP 2

Initial state 1 Initial state 2
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Value Functions

The value function 𝑉𝑡 : 𝒮 → ℝ for an MRP and utility gives the 
expected conditional utility for starting at 𝑆𝑡 = 𝑠:

𝑉𝑡 𝑠 = 𝐸𝑆𝑡+1,…,𝑆𝐻∣𝑆𝑡=𝑠[𝑈(𝑅𝑡+1, 𝑅𝑡+2 … )]
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Revised MEU for MRPs

Given two MRPs with the same state space 𝒮, let 𝑉𝑡
1, 𝑉𝑡

2 be the 
respective value functions.

Revised MEU: MRP 1 ≥ MRP 2 if ∀ 𝑡, 𝑠. 𝑉𝑡
1 𝑠 ≥ 𝑉𝑡

2(𝑠).

“I prefer MRP 1 over MRP2 (or am indifferent) if for any time and state, the 
expected conditional utility for MRP1 is at least that of MRP2.”
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Revised MEU for MRPs

Given two MRPs with the same state space 𝒮, let 𝑉𝑡
1, 𝑉𝑡

2 be the 
respective value functions.

Revised MEU: MRP 1 ≥ MRP 2 if ∀ 𝑡, 𝑠. 𝑉𝑡
1 𝑠 ≥ 𝑉𝑡

2(𝑠).

“I prefer MRP 1 over MRP2 (or am indifferent) if for any time and state, the 
expected conditional utility for MRP1 is at least that of MRP2.”

How to evaluate in practice?
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Additive Utility Functions

We will now focus on additive utility functions:

• Finite horizon: 𝑈 𝑟1, 𝑟2, … , 𝑟𝐻 = σ 𝑟𝑡 .
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Additive Utility Functions

We will now focus on additive utility functions:

• Finite horizon: 𝑈 𝑟1, 𝑟2, … , 𝑟𝐻 = σ 𝑟𝑡 .

• Infinite or indefinite horizon: 𝑈 𝑟1, 𝑟2, … = σ 𝛾𝑡𝑟𝑡 
 where 𝛾 ∈ [0, 1] is a temporal discount factor.

Infinite horizons: 𝛾 ∈ 0, 1
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Value Functions with Additive Utility

With additive utility, value functions give expected cumulative 
rewards:

𝑉𝑡 𝑠 = 𝐸𝑆𝑡+1,…,𝑆𝐻∣𝑆𝑡=𝑠[𝑅𝑡+1 + ⋯ + 𝑅𝐻]                  (finite horizon)
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Value Functions with Additive Utility

With additive utility, value functions give expected cumulative 
rewards:

𝑉𝑡 𝑠 = 𝐸𝑆𝑡+1,…,𝑆𝐻∣𝑆𝑡=𝑠[𝑅𝑡+1 + ⋯ + 𝑅𝐻]                  (finite horizon)

𝑉 𝑠 = 𝐸𝑆𝑡+1,…∣𝑆𝑡=𝑠 𝑅𝑡+2 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 …   (infinite horizon)
No need for time subscripts in infinite horizon case
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Bellman Equations: Convenient Recursions
Finite Horizon

Infinite Horizon

Immediate reward Future rewards

𝑉𝑡 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠)[𝑅 𝑠, 𝑠′ + 𝑉𝑡+1 𝑠′ ]

𝑉𝐻 𝑠 = 0

𝑉 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠)[𝑅 𝑠, 𝑠′ + 𝛾𝑉 𝑠′ ]
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Bellman Equations: Convenient Recursions
Finite Horizon

Can solve for 𝑉𝑡 using dynamic programming.
Compute “backwards” from 𝑉𝐻.

𝑉𝑡 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠)[𝑅 𝑠, 𝑠′ + 𝑉𝑡+1 𝑠′ ]

𝑉𝐻 𝑠 = 0
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Bellman Equations: Convenient Recursions

Infinite Horizon

This is a system of linear equations with 𝒮  unknowns and 𝒮  
equations. Can solve for 𝑉 using linear algebra (≈ cubic time).

𝑉 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠)[𝑅 𝑠, 𝑠′ + 𝛾𝑉 𝑠′ ]
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Recap

How to choose an MRP?

1. Solve Bellman equations to 
get value functions.

2. Check preference property: 
does one value function 
“dominate” the other, across 
all states?

MRP 1 MRP 2

Now assuming:
• Shared state space
• Additive utility
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Toward Sequential Decision-Making

Given a choice between MRPs, we now know how to pick our 
favorite one.

This is one-time decision making, at the MRP level.

What if we get to make decisions at each time step, influencing the 
distribution over next states?
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Markov Decision Processes

Markov decision process (MDP): MRP + actions.
• State space 𝒮

• Action space 𝒜

• Reward function 𝑅 ∶ 𝒮 × 𝒜 × 𝒮 → ℝ

• Transition distribution 𝑃(𝑆𝑡+1 ∣ 𝐴𝑡 , 𝑆𝑡)

𝑎𝑡 is action at time 𝑡
𝐴𝑡 is random variable for action at time 𝑡
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Markov Decision Processes

Markov decision process (MDP): MRP + actions.
• State space 𝒮

• Action space 𝒜

• Reward function 𝑅 ∶ 𝒮 × 𝒜 × 𝒮 → ℝ

• Transition distribution 𝑃(𝑆𝑡+1 ∣ 𝐴𝑡 , 𝑆𝑡)

Reward now depends on action

Transitions now depends on action
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Markov Decision Processes

Markov decision process (MDP): MRP + actions.
• State space 𝒮

• Action space 𝒜

• Reward function 𝑅 ∶ 𝒮 × 𝒜 × 𝒮 → ℝ

• Transition distribution 𝑃(𝑆𝑡+1 ∣ 𝐴𝑡 , 𝑆𝑡)

Assumption until we say otherwise:
   The state space 𝒮 and action space 𝒜 are finite. 

Not generally true for MDPs.
Just convenient for algorithms.
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MDP PGM
(Influence Diagram)

Influence diagrams 
can also include 
“decision nodes” 

(squares)
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Example: Marshmallows
• States: (hunger level, marshmallow remains)

• Hunger level: 0, 1, 2 (higher is hungrier)
• Marshmallow remains: True or False 

• Actions: eat marshmallow, or wait
• Horizon: finite (horizon 𝐻 = 4)
• Rewards: Negative hunger level squared (on next state)
• Transition distribution:

• Marshmallow remains updated in obvious way
• If wait:

• With probability 0.25, hunger level increases by 1
• Otherwise, hunger level stays the same

• If eat (and marshmallow remains):
• With probability 1, hunger level set to 0

• If eat (and marshmallow gone):
• Same as waiting
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Example: Zits
• States: Number of zits on my face: 0, 1, 2, 3, 4
• Actions: apply zit cream, or just sleep
• Horizon: infinite (Temporal discount: 𝛾 = 0.9)
• Rewards:

• R(s, apply, s’) = -(# zits on my face in s’) - 1
• R(s, sleep, s’) = -(# zits on my face in s’)

• Transition distribution:
• If apply:

• With probability 0.8, all zits gone (0)
• With probability 0.2, all zits grow (4)

• If sleep:
• With probability 0.4, 1 more zit grows
• With probability 0.6, 1 zit disappears
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Example: Chase

• States: (robot pos, rabbit pos)
• Actions: move robot up, down, left, right
• Horizon: indefinite

• Done states: robot pos = rabbit pos
• Temporal discount: 𝛾 = 0.9

• Rewards:
• +1 for transition that ends in done
• 0 otherwise

• Transition distribution:
• robot pos is updated deterministically
• rabbit stays in same place with prob 0.5
• otherwise jumps to neighboring pos

with uniform prob
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Policies

A policy is a function from states to actions.

Can be stationary: 𝜋 ∶  𝒮 → 𝒜 

or time-dependent: 𝜋𝑡 ∶  𝒮 → 𝒜 
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Policies

A policy is a function from states to actions.

Can be stationary: 𝜋 ∶  𝒮 → 𝒜 

or time-dependent: 𝜋𝑡 ∶  𝒮 → 𝒜 

MDP Planning: Find a 
“good” policy.

What exactly does 
“good” mean?
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Policy + MDP = MRP

• Consider the process of generating states and rewards by 
following a policy 𝜋 in an MDP

• This process is an MRP!
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Policy + MDP = MRP

• Consider the process of generating states and rewards by 
following a policy 𝜋 in an MDP

• This process is an MRP!

• MRP transition distribution: 𝑃(𝑠′ ∣ 𝑠) = 𝑃(𝑠′ ∣ 𝑠, 𝜋 𝑠 )

From the MDP
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Policy + MDP = MRP

• Consider the process of generating states and rewards by 
following a policy 𝜋 in an MDP

• This process is an MRP!

• MRP transition distribution: 𝑃(𝑠′ ∣ 𝑠) = 𝑃(𝑠′ ∣ 𝑠, 𝜋 𝑠 )

• MRP reward function: 𝑅 𝑠, 𝑠′ = 𝑅(𝑠, 𝜋 𝑠 , 𝑠′)

From the MDP

From the MDP
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MRP 1 MRP 2Policy 1 Policy 2

MDP

=
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Value Functions for Policies

The value function 𝑉𝑡
𝜋: 𝒮 → ℝ for a policy 𝜋 in an MDP is the value 

function for the induced MRP.

In other words, 𝑉𝑡
𝜋(𝑠) gives the expected conditional utility for 

starting at 𝑆𝑡 = 𝑠 and following 𝜋.
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Value Functions for Policies

The value function 𝑉𝑡
𝜋: 𝒮 → ℝ for a policy 𝜋 in an MDP is the value 

function for the induced MRP.

In other words, 𝑉𝑡
𝜋 gives the expected conditional utility for 

starting at 𝑆𝑡 = 𝑠 and following 𝜋.

Policy evaluation: 
computing 𝑉𝜋 given 𝜋.
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Bellman Equations: Convenient Recursions

𝑉𝑡
𝜋 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝜋(𝑠))[𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝑉𝑡+1
𝜋 𝑠′ ]

𝑉𝐻
𝜋 𝑠 = 0

𝑉𝜋 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝜋(𝑠))[𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋 𝑠′ ]

Finite Horizon

Infinite Horizon
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Bellman Equations: Convenient Recursions

𝑉𝑡
𝜋 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝜋(𝑠))[𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝑉𝑡+1
𝜋 𝑠′ ]

𝑉𝐻
𝜋 𝑠 = 0

Finite Horizon

Can solve for 𝑉𝑡 using dynamic programming.
Compute “backwards” from 𝑉𝐻.
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Bellman Equations: Convenient Recursions

𝑉𝜋 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝜋(𝑠))[𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋 𝑠′ ]

Infinite Horizon

This is a system of linear equations with 𝒮  unknowns and 𝒮  
equations. Can solve for 𝑉 using linear algebra (≈ cubic time).
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Planning: Finding an Optimal Policy

Optimal value function: 𝑉∗ 𝑠 = max
𝜋

 𝑉𝜋(𝑠)

Optimal policy: 𝜋∗ s.t. ∀𝑠 ∈ 𝒮.  𝑉𝜋∗
𝑠 = 𝑉∗(𝑠).

“A policy is optimal if it always takes an action that leads to 
maximum expected utility.”
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Stupidest Possible Algorithm (SPA) for 
MDP Planning
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Stupidest Possible Algorithm (SPA) for 
MDP Planning

Review: how would we check this?
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Policy Iteration: A Less Stupid Algorithm

“Find a policy 
improvement.”
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Policy Iteration: A Less Stupid Algorithm

Guaranteed to converge to 
an optimal policy.
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Policy Iteration: A Less Stupid Algorithm

This is ugly, let’s refactor
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Action-Value (Q) Functions

The action-value function 𝑄𝑡
𝜋: 𝒮 × 𝒜 → ℝ gives the expected 

cumulative rewards for starting at 𝑆𝑡 = 𝑠, taking action 𝐴𝑡 = 𝑎, and 
then following 𝜋:

𝑄𝑡
𝜋 𝑠, 𝑎 = 𝐸𝑆𝑡+1∣𝑆𝑡=𝑠, 𝐴𝑡=𝑎 [𝑅𝑡 + 𝑉𝑡+1

𝜋 𝑆𝑡+1 ]
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Policy Iteration: Refactored

Tom Silver - Princeton University - Fall 2025 65



Avoiding Policy Evaluation

• Policy iteration requires evaluating the Bellman equations in the 
inner loop, which can be expensive

• Rather than keeping track of a policy, what if we compute an 
optimal value function directly?

• Once we have the optimal value function, we can compute a 
corresponding optimal policy at the end
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Value Function → Policy

Given an action-value function 𝑄, a greedy policy is:

𝜋 𝑠 = argmax𝑎 𝑄(𝑠, 𝑎)
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Value Function → Policy

Given an action-value function 𝑄, a greedy policy is:

𝜋 𝑠 = argmax𝑎 𝑄(𝑠, 𝑎)

If we have an optimal action-value function 𝑄∗, the greedy policy 
is an optimal policy:

𝜋∗ 𝑠 = argmax𝑎 𝑄
∗(𝑠, 𝑎)
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Value Function → Policy

Given an action-value function 𝑄, a greedy policy is:

𝜋 𝑠 = argmax𝑎 𝑄(𝑠, 𝑎)

If we have an optimal action-value function 𝑄∗, the greedy policy 
is an optimal policy:

𝜋∗ 𝑠 = argmax𝑎 𝑄
∗(𝑠, 𝑎) Are greedy policies unique?

Tom Silver - Princeton University - Fall 2025 69



Value Function → Policy

Given an action-value function 𝑄, a greedy policy is:

𝜋 𝑠 = argmax𝑎 𝑄(𝑠, 𝑎)

If we have an optimal action-value function 𝑄∗, the greedy policy 
is an optimal policy:

𝜋∗ 𝑠 = argmax𝑎 𝑄
∗(𝑠, 𝑎)

So, how can we directly compute 𝑉∗ / 
𝑄∗?
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Bellman Equations: Convenient Recursions

𝑉𝑡
∗ 𝑠 = max

𝑎
෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝑎)[𝑅 𝑠, 𝑎, 𝑠′ + 𝑉𝑡+1
∗ 𝑠′ ]

𝑉𝐻
∗ 𝑠 = 0

Finite Horizon
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Bellman Equations: Convenient Recursions

𝑉𝑡
∗ 𝑠 = max

𝑎
෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝑎)[𝑅 𝑠, 𝑎, 𝑠′ + 𝑉𝑡+1
∗ 𝑠′ ]

𝑉𝐻
∗ 𝑠 = 0

Finite Horizon

Can solve for 𝑉𝑡
∗ using dynamic programming.

Compute “backwards” from 𝑉𝐻
∗ .
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Compute Optimal Value Functions: Finite Horizon
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Compute Optimal Value Functions: Finite Horizon

Tom Silver - Princeton University - Fall 2025 74

What’s the asymptotic 
complexity?

Example of dynamic 
programming



Example: Marshmallows
• States: (hunger level, marshmallow remains)

• Hunger level: 0, 1, 2 (higher is hungrier)
• Marshmallow remains: True or False 

• Actions: eat marshmallow, or wait
• Horizon: finite (horizon 𝐻 = 4)
• Rewards: Negative hunger level squared (on next state)
• Transition distribution:

• Marshmallow remains updated in obvious way
• If wait:

• With probability 0.25, hunger level increases by 1
• Otherwise, hunger level stays the same

• If eat (and marshmallow remains):
• With probability 1, hunger level set to 0

• If eat (and marshmallow gone):
• Same as waiting
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Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0
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Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Iteration (H=3)

• V[3][0T] = max(

  … // Eat

  … // Wait 

) 
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Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Iteration (H=3)

• V[3][0T] = max(

  P(0F | E, 0T)(R(0T, E, 0F) + V[4][0F])

  
  

  … // Wait

) 

Zero-prob transitions 
not written

Eat → 0F
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Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Iteration (H=3)

• V[3][0T] = max(

  P(0F | E, 0T)(R(0T, E, 0F) + V[4][0F])

  
  

  P(0T | W, 0T)(R(0T, W, 0T) + V[4][0T]) + P(1T | W, 0T)(R(0T, W, 1T) + V[4][1T])

) 

Eat → 0F

Wait → 0T Wait → 1T
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Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Iteration (H=3)

• V[3][0T] = max(

  P(0F | E, 0T)(R(0T, E, 0F) + V[4][0F])

  P(0T | W, 0T)(R(0T, W, 0T) + V[4][0T]) + P(1T | W, 0T)(R(0T, W, 1T) + V[4][1T])

) 

= max(

  1 * (0 + 0)
  0.75 * (0 + 0) + 0.25 * (-1 + 0)

) =  0

... 
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Bellman Backups

The meat of the value function update was this:

Important enough that we will give it a name: Bellman backup

Bellman, because of the Bellman equation.

Backup, because we’re looking one step ahead and “backing up”.
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Compute Optimal Value Functions: Finite Horizon

Refactored
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Bellman Equations: Convenient Recursions

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝑎)[𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′ ]

Infinite Horizon

No longer linear! What to do?
Idea: iteratively “plug in” the RHS to update the LHS.
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Value Iteration
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Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
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Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
• 𝑂( 𝒮 2 𝒜 )
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Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
• 𝑂( 𝒮 2 𝒜 )

• How should we check convergence?
• For theoretical guarantees, use max

𝑠
 𝑉 𝑠 − 𝑉𝑛 𝑠 < 𝜖.
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Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
• 𝑂( 𝒮 2 𝒜 )

• How should we check convergence?
• For theoretical guarantees, use max

𝑠
 𝑉 𝑠 − 𝑉𝑛 𝑠 < 𝜖.

• Is this guaranteed to converge to the optimal value function?
• (Thm) Yes.
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Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
• 𝑂( 𝒮 2 𝒜 )

• How should we check convergence?
• For theoretical guarantees, use max

𝑠
 𝑉 𝑠 − 𝑉𝑛 𝑠 < 𝜖.

• Is this guaranteed to converge to the optimal value function?
• (Thm) Yes.

• Does the initialization matter?
• Asymptotically, no, but it can affect the rate of convergence. (Extreme 

case: initialize to optimal.)

Tom Silver - Princeton University - Fall 2025 90



Why Does Value Iteration Work?

• Each iteration maps one value function 𝑉 to another, 𝑉𝑛

• We can think about this map as a function 𝐵 ∶ ℝ|𝒮| → ℝ|𝒮|

• Here we are representing a value function as a vector
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Why Does Value Iteration Work?

• Each iteration maps one value function 𝑉 to another, 𝑉𝑛

• We can think about this map as a function 𝐵 ∶ ℝ|𝒮| → ℝ|𝒮|

• Here we are representing a value function as a vector

• Example: 𝒮 = 2. Three different initializations.
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Why Does Value Iteration Work?

• 𝐵 is a contraction mapping*
• There exists some 𝑘 s.t. for any two inputs 𝑣, 𝑣′,
 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵(𝑣), 𝐵(𝑣′) ≤ 𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑣′).
That is, all pairs of points get closer after the mapping is applied.

For us, distance is 𝐿∞-norm.

*Short proof: http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf Slide 19.
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Why Does Value Iteration Work?

• 𝐵 is a contraction mapping*
• There exists some 𝑘 s.t. for any two inputs 𝑣, 𝑣′,
 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵(𝑣), 𝐵(𝑣′) ≤ 𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑣′).
That is, all pairs of points get closer after the mapping is applied.

• Theorem (Banach fixed point theorem): If 𝐵 is a contraction 
mapping, it has a unique fixed point.

• For us, that unique fixed point is the optimal value function.
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Policy Iteration vs. Value Iteration

• PI typically needs fewer iterations than VI to converge

• However, each iteration of PI requires policy evaluation

• Modified PI (Putterman & Shin, 1978) performs a cheaper 
approximate policy evaluation. Often the best in practice

• But with modern compute, if you have an MDP that is practically 
too big for VI, then it’s probably too big for PI and MPI as well, 
and you need approximate methods
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Linear Programming

Compute value function by solving linear program:

Less widely used. But, tightest complexity bounds!

And, the basis for some other approximate methods, with 
connections to other communities.
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Next Time

• What if 𝒮 is very large?

• If we know our current state, could we leverage it?

• How can we incorporate heuristics?
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