Offline Planning in MDPs

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025

Building Toward MDPs

Markov Chains

Markov chain: sequence of random variables Sy, S, S5, ... , with
the same domain § s.t. Markov property holds:

forallt > 0. P(S;i11S:,Si—q1, .) = P(Seqq | Sp).

“The future is independent of the past given the present.”

M a rkov Cha I nS Each S; represents a state

Markov chain: sequence of random variables Sy, S, S5, ... , with
the same domain § s.t. Markov property holds:

The state space
fOI‘ G” t = 0. FO¢t31 | Oty OE—1s ==) — P(St+1 | St)'

“The future is independent of the past given the present.”

Markov Chains

Markov chain: sequence of random variables Sy, S, S5, ... , with
the same domain § s.t. Markov property holds:

Assuming discrete

forallt > 0. P(S;iq|Se,Si—q, ..) = P(Se41 1 Sp). time

“The future is independent of the past given the present.”

Markov Chains

Transition distribution for time t: P.(S, | S¢)
Stationary Markov chain: for all t,t’, P, = P,,. a.k.a. time-homogeneous
“The transition distribution doesn’t change over time.”

Notation for stationary MCs omits subscript: P(S | S¢)

Markov Chain PGM

CID
P

t=0

Graphical model for a Markov chain Graphica] model “plate notation”
for a time-homogenous Markov chain

Example

How would we represent this
scenario as a Markov Chain?

Tom Silver - Princeton University - Fall 2025 8

Markov Reward Processes

Markov reward process: Markov chain + reward function
Reward function: R: S xS - R (higher is better)
R(s¢, S¢4q) — 1 is the scalar reward

R(S¢, S¢+1) Is a random variable

Influence diagrams are
an extension of Bayes
nets that include

(Influence Diagram) “reward nodes”

(diamonds)

t =0

Influence diagram for a Markov Reward Process (MRP) Plate notation for time-homogenous MRP

Time Horizons

* Finite horizon: Sy, S5, ..., Sy. Co e

* Infinite horizon: S,, S, ...

Time Horizons

* Finite horizon: Sy, S4, ..., Sy.
* Infinite horizon: S,, S, ...

* Indefinite horizon: a.k.a. sink states, terminal states,
 Let D c S be a set of done states. absorbing states
* The process terminates whenever a state in D is encountered.

Time Horizons

* Finite horizon: Sy, S4, ..., Sy.

For indefinite horizon,

* Infinite horizon: S,, S, ... usually assume that we
.. . will reach a done state
* Indefinite horizon: with probability 1.

* Let D c § be a set of done states.
* The process terminates whenever a state in D is encountered.

Example

How would we represent this
scenario as an MRP?

Tom Silver -

Princeton Urt®

14

Tom Silver - Princeton University - Fall 2025

15

Utilities

A utility for an MRP is a function U(ry, 1y, ...,) » u € R.
Utility is “what we really want to maximize.”

Utilities

A utility for an MRP is a function U(r, 15, ...,) » u € R.
Utility is “what we really want to maximize.”

If | get money now,
a bully would take
it. Better to wait.

| need money now!
ASAP!!!

What would each agent’s utility look like?

Tom Silver - Princeton University - Fall 2025 17

Utilities

A utility for an MRP is a function U(r, 15, ...,) » u € R.
Utility is “what we really want to maximize.”

® | just want to know ®
:] what it feels like to ' i | really, really don't
@@ score big. Just once @@ want to fail.
“ k. 11 4 ' iS enough. “ . 111 4 "
- -

What would each agent’s utility look like?

Tom Silver - Princeton University - Fall 2025

18

Utilities
A utility for an MRP is a function U(ry, 1y, ...,) » u € R.

Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a
rational agent should prefer the one that has larger expected
utility, where the expectation is over (state, reward) trajectories.

Utilities

A utility for an MRP is a function U(ry, 1y, ...,) » u € R.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a
rational agent should prefer the one that has larger expected
utility, where the expectation is over (state, reward) trajectories.

Note: for the moment, we're assuming
some distribution over initial states.

Utilities

A utility for an MRP is a function U(ry, 1y, ...,) » u € R.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a
rational agent should prefer the one that has larger expected
utility, where the expectation is over (state, reward) trajectories.

Seems reasonable, but is this the only option?

Preferences, Axioms of Utility Theory

* Suppose an agent has preferences: Y S S
« A > B (the agent prefers 4 over B) Formally: lotteries.
« A ~ B (the agent is indifferent) For our purposes: MRPs.

« A > B (the agent prefers A over B or is indifferent)

Preferences, Axioms of Utility Theory

* Suppose an agent has preferences:
« A > B (the agent prefers 4 over B)
« A ~ B (the agent is indifferent)
« A > B (the agent prefers A over B or is indifferent)

« Axioms of utility theory:
* Orderability: exactly oneof A > B, B > A, or A ~ B holds for all 4, B.
* Transitivity: if A>Band B > C then 4 > C.

* Four other more technical ones using lottery definition: continuity,
substitutability, monotonicity, decomposability.

Preferences, Axioms of Utility Theory

Theorem (von Neumann & Morgenstern, 1944): Axioms of utility
= maximum expected utility principle.

So, if we accept the axioms, then MEU is what we need.

Our Agent’s Utility vs Our Own

Value Alignment Problem

 Need to be very careful &
thoughtful about utility
definitions!

 Difficult to capture all societal
norms

 Famous example: paperclip
maximizer (Bostrom 2003)

* Right: another example
(OpenAI 2016) -, ML

Tom Silver - Princeton University - Fall 2025 25

Utilities
A utility for an MRP is a function U(ry, 1y, ...,) » u € R.

Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a
rational agent should prefer the one that has larger expected
utility, where the expectation is over (state, reward) trajectories.

Note: for the moment, we're
assuming some distribution over
initial states.

But MRPs don't have an initial
state distribution! Let’s revisit...

=

e

N din- »

SLV S

"2
L

‘*"‘“’. Initial state 1 ;

Tom Silver - Princeton University - Fall 2025

27

Value Functions

The value function V; :§ — R for an MRP and utility gives the
expected conditional utility for starting at S; = s:

Vt(S) — ESt+1,...,SH|St=S[U(Rt'l'l’ Rt+2 "')]

Revised MEU for MRPs

Given two MRPs with the same state space S, let V!, Vi be the
respective value functions.

Revised MEU: MRP 1 > MRP 2 if v t, 5. V1(s) = V2(s).

“I| prefer MRP 1 over MRP2 (or am indifferent) if for any time and state, the
expected conditional utility for MRP1 is at least that of MRP2.”

Revised MEU for MRPs

Given two MRPs with the same state space S, let V!, Vi be the
respective value functions.

Revised MEU: MRP 1 > MRP 2 if v t, 5. V1(s) = V2(s).

How to evaluate in practice?

“I| prefer MRP 1 over MRP2 (or am indifferent) if for any time and state, the
expected conditional utility for MRP1 is at least that of MRP2.”

Additive Utility Functions

We will now focus on additive utility functions:

* Finite horizon: U(ry, 1y, ..., 1y) = 0 1% .

Additive Utility Functions

We will now focus on additive utility functions:

* Finite horizon: U(ry, 1y, ..., 1y) = 0 1% .
* Infinite or indefinite horizon: U(ry, 15, ...) = X ¥ty
where y € [0, 1] is a temporal discount factor.

Infinite horizons: y € [0, 1)

Value Functions with Additive Utility

With additive utility, value functions give expected cumulative
rewards:

Vi(s) = Es, .. . syis;=s[Re+1 + - + Ry] (finite horizon)

Value Functions with Additive Utility

With additive utility, value functions give expected cumulative
rewards:

Vi(s) = Es, .. . syis;=s[Re+1 + - + Ry] (finite horizon)
V(s) =Es.., is,=s [Rerz +VRey2 +V*Riys...] (infinite horizon)

No need for time subscripts in infinite horizon case

Bellman Equations: Convenient Recursions

Finite Horizon

Vi(s) =) P(s" IR, + Vega ()]

!
S
_ Immediate reward Future rewards
Vy(s) =0

Infinite Horizon

V(s) = z P(s" I s)[R(s,s") +yV(s')]

Bellman Equations: Convenient Recursions

Finite Horizon

Vi(s) = 2P<s | $)[R(s,8) + Viaq (s1)]

Vy(s) =

|

Can solve for V, using dynamic programming.
Compute “backwards” from V.

Tom Silver - Princeton University - Fall 2025

36

Bellman Equations: Convenient Recursions

This is a system of linear equations with |§| unknowns and |§]|
equations. Can solve for V using linear algebra (= cubic time).

\
! \

Infinite Horizon

V(s) = 2 P(s" |)[R(s,s") +yV(s')]

Tom Silver - Princeton University - Fall 2025

Recap

How to choose an MRP?

1. Solve Bellman equations to
get value functions.

2. Check preference property:
does one value function
“dominate” the other, across

all states? Now assuming:

« Shared state space
« Additive utility

Tom Silver - Princeton University - Fall 2025 38

Toward Sequential Decision-Making

Given a choice between MRPs, we now know how to pick our
favorite one.

This is one-time decision making, at the MRP level.

What if we get to make decisions at each time step, influencing the
distribution over next states?

Markov Decision Processes

Markov decision process (MDP): MRP + actions.
« State space §

a; is action at time ¢t

. Action space A A¢ is random variable for action at time ¢

e Reward functionR: S XA XS » R
 Transition distribution P(S;,1 | 4, S;)

Markov Decision Processes

Markov decision process (MDP): MRP + actions.
« State space §

* Action space A
e Reward function R : S XA XS - R Reward now depends on action

 Transition distribution P(S;.1 | A¢, S¢) Transitions now depends on action

Markov Decision Processes

Markov decision process (MDP): MRP + actions.
« State space §

* Action space A
 Reward function R: S X A XS - R
 Transition distribution P(S;,1 | 4, S;)

Assumption until we say otherwise: Not generally true for MDPs.

The state space § and action space A are finite. Just convenient for algorithms.

M D P PG M Influence diagrams
can also include

“decision nodes”

(Influence Diagram) (squares)

@lelf eeeeeeeeeeeee | el

A A A

0 1 t
t=0

Influence diagram for a Markov Decision Process (MDP) Plate notation for time-homogenous MDP
Tom Silver - Princeton University - Fall 2025

43

Example: Marshmallows

States: (hunger level, marshmallow remains)
* Hunger level: O, 1, 2 (higher is hungrier)
* Marshmallow remains: True or False
Actions: eat marshmallow, or wait
Horizon: finite (horizon H = 4)
Rewards: Negative hunger level squared (on next state)
Transition distribution:
* Marshmallow remains updated in obvious way
o |If wait:
« With probability 0.25, hunger level increases by 1
* Otherwise, hunger level stays the same
* If eat (and marshmallow remains):
« With probability 1, hunger level set to O
« If eat (and marshmallow gone):
* Same as waiting

Example: Zits

« States: Number of zits on my face: 0, 1, 2, 3,4
« Actions: apply zit cream, or just sleep
« Horizon: infinite (Temporal discount: y = 0.9)
 Rewards:
e R(s, apply, s') = -(# zits on my faceins’) - 1
s R(s, sleep, s') = -(# zits on my facein s’)
* Transition distribution:
« |f apply:
« With probability 0.8, all zits gone (0)
« With probability 0.2, all zits grow (4)
o |[f sleep:
* With probability 0.4, 1 more zit grows
* With probability 0.6, 1 zit disappears

Tom Silver - Princeton University - Fall 2025 45

Example: Chase

Tom Silver - Princeton University -

States: (robot pos, rabbit pos)
Actions: move robot up, down, left, right
Horizon: indefinite
* Done states: robot pos = rabbit pos
 Temporal discount: y = 0.9
Rewards:
« +1 for transition that ends in done
* 0O otherwise
Transition distribution:
* robot pos is updated deterministically
* rabbit stays in same place with prob 0.5
« otherwise jumps to neighboring pos
with uniform prob

Fall 2025 46

Policies

A policy is a function from states to actions.
Can be stationary: 7 : § - A

or time-dependent: r; : § - A

Policies

A policy is a function from states to actions.
Can be stationary: 7 : § - A

or time-dependent: r; : § - A

MDP Planning: Find a What exactly does
“good” policy. “good” mean?

Policy + MDP = MRP

» Consider the process of generating states and rewards by
following a policy w in an MDP

* This process is an MRP!

Policy + MDP = MRP

» Consider the process of generating states and rewards by
following a policy w in an MDP

* This process is an MRP!

From the MDP

* MRP transition distribution: P(s' | s) = P(s’ | s,m(s))

Policy + MDP = MRP

» Consider the process of generating states and rewards by
following a policy w in an MDP

* This process is an MRP!

From the MDP

* MRP transition distribution: P(s' | s) = P(s’ | s,m(s))

From the MDP

* MRP reward function: R(s,s’) = R(s,m(s),s")

Tom Silver - Princeton University - Fall 2025 52

Value Functions for Policies

The value function V/*: § — R for a policy = in an MDP is the value
function for the induced MRP.

In other words, V*(s) gives the expected conditional utility for
starting at S; = s and following .

Value Functions for Policies

The value function V/*: § — R for a policy = in an MDP is the value
function for the induced MRP.

In other words, V/* gives the expected conditional utility for
starting at S; = s and following .

Policy evaluation:
computing V™ given .

Bellman Equations: Convenient Recursions

Finite Horizon

VE(s) =) P(s' 15, m(sDIRGs, 7(),5) + Vs (s")]
Vi(s) =0

Infinite Horizon

V7 (s) = 2 P(s' | s,m(s)[R(s,7(5),s") + YV (s))]

Tom Silver - Princeton University - Fall 2025

55

Bellman Equations: Convenient Recursions

Finite Horizon

VE(s) =) P(s' 15, m(sDIRGs, 7(),5) + Vs (s")]
Vi(s) =0

|

Can solve for V, using dynamic programming.
Compute “backwards” from V.

Tom Silver - Princeton University - Fall 2025

56

Bellman Equations: Convenient Recursions

This is a system of linear equations with |§| unknowns and |§]|
equations. Can solve for V using linear algebra (= cubic time).

\
{ \

Infinite Horizon

V7 (s) = 2 P(s' | s,m(s)[R(s,7(5),s") + YV (s))]

Tom Silver - Princeton University - Fall 2025

57

Planning: Finding an Optimal Policy

Optimal value function: V*(s) = max V™ (s)
T

Optimal policy: 7* s.t. Vs € S. VT (s) = V*(s).

“A policy is optimal if it always takes an action that leads to
maximum expected utility.”

Stupidest Possible Algorithm (SPA) for
MDP Planning

PoLicYENUMERATION(S, A, P, R,)

1 // 1lis set of all possible policies
2 formell

3 If 7 is best seen so far, keep it
4 return Best seen 7

Stupidest Possible Algorithm (SPA) for
MDP Planning

PoLicYENUMERATION(S, A, P, R,)
1 // 1lis set of all possible policies
2 formell

3 If 7 is best seen so far, keep it Review: how would we check this?
4 return Best seen 7

Policy Iteration: A Less Stupid Algorithm

PoricylteraTiON(S, A, P, R, 7) “Find a policy

1 // Initialize a policy 7 arbitrarily. improvement.”

2 repeat

3 Compute V7.

4 Find s € S, a € S s.t ESt+1|S¢:s,At:a[Vﬂ-(SH—1)] > Est+1|5t=S,At=ﬂ'(S) [VW(SH_l)].
5 If none exist, return .

6 Otherwise, update 7(s) = a.

Tom Silver - Princeton University - Fall 2025

61

Policy Iteration: A Less Stupid Algorithm

PoricylteraTiON(S, A, P, R, 7)
1 // Initialize a policy 7 arbitrarily.

2 repeat

3 Compute V7.

4 Find s € S, a € S s.t ESt+1|St:s,At:a[Vﬂ-(SH—l)] > Est+1|5t=S,At=ﬂ'(S) [VW(SH_l)].
5 If none exist, return .

6 Otherwise, update 7(s) = a.

Guaranteed to converge to
an optimal policy.

Tom Silver - Princeton University - Fall 2025 62

Policy Iteration: A Less Stupid Algorithm

PoricylteraTiON(S, A, P, R, 7)
1 // Initialize a policy 7 arbitrarily.

2 repeat

3 Compute V7.

4 Find s € S, a € S s.t ESt+1|S¢:s,At:a[Vﬂ-(SH—1)] > Est+1|5t=S,At=ﬂ'(S) [VW(SH_l)].
5 If none exist, return .

6 Otherwise, update 7(s) = a.

This is ugly, let's refactor

Tom Silver - Princeton University - Fall 2025 63

Action-Value (Q) Functions

The action-value function Q: S X A — R gives the expected
cumulative rewards for starting at S; = s, taking action A; = a, and
then following :

ZLT(S’ a’) — ESt+1|St=S,At=a [Rt + Vt?-fl—]_(St+1)]

Policy Iteration: Refactored

PovricyIteraTION(S, A, P, R,)
1 // Initialize a policy 7 arbitrarily.

2 repeat

3 Compute V7.

4 Finds € S,a € Ss.t. Q"(s,a) > Q7 (s, m(s)).
5 If none exist, return 7.

6 Otherwise, update 7(s) = a.

Tom Silver - Princeton University - Fall 2025

65

Avoiding Policy Evaluation

 Policy iteration requires evaluating the Bellman equations in the
inner loop, which can be expensive

« Rather than keeping track of a policy, what if we compute an
optimal value function directly?

* Once we have the optimal value function, we can compute a
corresponding optimal policy at the end

Value Function = Policy

Given an action-value function Q, a greedy policy is:

n(s) = argmax, Q(s,a)

Value Function = Policy

Given an action-value function Q, a greedy policy is:

n(s) = argmax, Q(s,a)

If we have an optimal action-value function Q*, the greedy policy
Is an optimal policy:

n*(s) = argmax, Q*(s, a)

Value Function = Policy
Given an action-value function Q, a greedy policy is:
n(s) = argmax, Q(s,a)

If we have an optimal action-value function Q*, the greedy policy
Is an optimal policy:

*(s) = argmax, Q" (s,a) Are greedy policies unique?

Value Function = Policy

Given an action-value function Q, a greedy policy is:

n(s) = argmax, Q(s,a)

If we have an optimal action-value function Q*, the greedy policy
Is an optimal policy:

n*(s) = argmax, Q*(s, a)

So, how can we directly compute V* /

Q?

Bellman Equations: Convenient Recursions

Finite Horizon

Vi (s) = mC?XE P(s"|s,a)[R(s,a,s") + Vi q1(s")]

Vi(s) =0

Tom Silver - Princeton University - Fall 2025

71

Bellman Equations: Convenient Recursions

Finite Horizon

Vi (s) = mC?XE P(s"|s,a)[R(s,a,s") + Vi q1(s")]

Vi(s) =0

|

Can solve for V; using dynamic programming.
Compute “backwards” from V.

Tom Silver - Princeton University - Fall 2025

72

Compute Optimal Value Functions: Finite Horizon

ComputeFiNniTEHORIZONVALUEFUNCTION(S, A, P, R, H)

p—

// Represent values as dictionary V[t] [s] = V;*(s).
V=dictQ
// Base case: final values are 0
foreachs € S

V[H][s] =0
// Recursive step: compute backwards in time
fort=H—-1,H—-2,...,0

foreachs € S

Vit][s] = maxXaca) .. .g P(s’ | s,a)[l(s,a,s”) +V[t+1][s’]]

OO OG-~ WN

p—

return V

Compute Optimal Value Functions: Finite Horizon

ComputeFiNniTEHORIZONVALUEFUNCTION(S, A, P, R, H)

1/ Represent values as dictionary V[t] [s] = V;"(s).

2 V=dictQ . Example of dynamic

3 // Base case: final values are 0 programming

4 foreachseS

5 V[H][s] = ©

6 / Recursive step: compute backwards in time What's the asymptotic

7 fort=H—1,H—2,....0 complexity?

8 foreachs € §

9 Vit][s] = maxXaca) .. .g P(s’ | s,a)[l(s,a,s”) +V[t+1][s’]]
10 returnV

Example: Marshmallows

States: (hunger level, marshmallow remains)
* Hunger level: O, 1, 2 (higher is hungrier)
* Marshmallow remains: True or False
Actions: eat marshmallow, or wait
Horizon: finite (horizon H = 4)
Rewards: Negative hunger level squared (on next state)
Transition distribution:
* Marshmallow remains updated in obvious way
o |If wait:
« With probability 0.25, hunger level increases by 1
* Otherwise, hunger level stays the same
* If eat (and marshmallow remains):
« With probability 1, hunger level set to O
« If eat (and marshmallow gone):
* Same as waiting

Initialization (H=4)
« V[4][OT] = O, V[4][1T] = 0O, V[4][2T] = 0, V[4][OF] = O, V[4][1F] = O, V[4][2F] = O

Tom Silver - Princeton University - Fall 2025

76

Initialization (H=4)
« V[4][OT] = O, V[4][1T] = 0O, V[4][2T] = 0, V[4][OF] = O, V[4][1F] = O, V[4][2F] = O

Iteration (H=3)

« V[3][OT] = max(
... // Eat
... // Wait

)

Initialization (H=4)
« V[4][OT] = O, V[4][1T] = 0O, V[4][2T] = 0, V[4][OF] = O, V[4][1F] = O, V[4][2F] = O

Iteration (H=3)
« V[3][OT] = max(

P(OF | E, OT)(R(OT, E, OF) + V[4][OF])

\ J
|

Eat = OF

Zero-prob transitions
not written

... // Wait

Tom Silver - Princeton University - Fall 2025

78

Initialization (H=4)
* V[4][OT] = O, V[4][1T] =0, V[4][2T] = O, V[4][OF] = O, V[4][1F] = O, V[4][2F] = O

Iteration (H=3)
« V[3][OT] = max(

P(OF | E, OT)(R(OT, E, OF) + V[4][OF])

\ J
|

Eat = OF

P(OT | W, OT)(R(OT, W, OT) + V[4][OT]) + P(AT | W, OT)(R(OT, W, 1T) + V[4][1T])

\ J |

Y Y
Wait 2 0T Wait 2 1T

Tom Silver - Princeton University - Fall 2025

79

Initialization (H=4)
« V[4][OT] = O, V[4][1T] = 0O, V[4][2T] = 0, V[4][OF] = O, V[4][1F] = O, V[4][2F] = O

Iteration (H=3)
« V[3][OT] = max(
P(OF | E, OT)(R(OT, E, OF) + V[4][OF])
P(OT | W, OT)(R(OT, W, OT) + V[4][OT]) + P(1T | W, OT)(R(OT, W, 1T) + V[4][1T])
)
= max(

1*(0+0)
0.75*(0+0)+0.25*(-1+0)

)= 10

Bellman Backups

T
V

he meat of the value function update was this:

t]1[s] = maxaca) . .sP(s’ |s,a)[R(s,a,s’)

VIt+1][s’]]

Important enough that we will give it a name: Bellman backup

Bellman, because of the Bellman equation.

Backup, because we're looking one step ahead and “backing up”.

Compute Optimal Value Functions: Finite Horizon

ComputeFintTEHORIZONVALUEFUNCTION(S, A, P, R, H)

p—

// Represent values as dictionary V[t][s] = V;*(s).
V=dict(Q
// Base case: final values are 0
foreachs € S

V[H][s] = ©
// Recursive step: compute backwards in time
fort=H—-1,H-2,...,0

foreachs € S

V[t][s] = BeLLmanBackur(s,V,S, A, P, R,t)

return V

Refactored

OO0 O NNONUGI = WD

p—

Bellman Equations: Convenient Recursions

No longer linear! What to do?
|dea: iteratively “plug in” the RHS to update the LHS.

\
! \

Infinite Horizon

V' (s) = mc?xz P(s"1s,a)[R(s,a,s) +yV (s)]

Tom Silver - Princeton University - Fall 2025

83

Value lteration

VALUEITERATION(S, A, P, R,)

1
2
3
4
5
6
7
8

// Represent values as dictionary V[s] = V*(s), initialized arbitrarily.
while not converged

// Initialize new value function dictionary

Vn = dict(Q)

foreachs € S

Vn[s] = BeLumanBackur(s,V,S, A, P, R, ~)

V = Vn

return V

Rabbit Pos=(0, 0) Rabbit Pos=(0, 1) Rabbit Pos=(0, 2)

Rabbit Pos=(1, 0) Rabbit Pos=(1, 1) Rabbit Pos=(1, 2)

Tom Silver - Princeton University - Fall 2025

Value Iteration (Continued)

 What'’s the asymptotic complexity per-iteration?

Value Iteration (Continued)

 What'’s the asymptotic complexity per-iteration?
* 0(IS1%|Al)

Value Iteration (Continued)

 What'’s the asymptotic complexity per-iteration?
* 0(IS1%|Al)

 How should we check convergence?
* For theoretical guarantees, use max | V(s) — Vn(s)| < e.
S

Value Iteration (Continued)

 What'’s the asymptotic complexity per-iteration?
* 0(IS1%|Al)

 How should we check convergence?
* For theoretical guarantees, use max | V(s) — Vn(s)| < e.
S

* |s this guaranteed to converge to the optimal value function?
e (Thm) Yes.

Value Iteration (Continued)

 What'’s the asymptotic complexity per-iteration?
* 0(IS1%|Al)

 How should we check convergence?
* For theoretical guarantees, use max | V(s) — Vn(s)| < e.
S

* |s this guaranteed to converge to the optimal value function?
e (Thm) Yes.

 Does the initialization matter?

« Asymptotically, no, but it can affect the rate of convergence. (Extreme
case: initialize to optimal.)

Why Does Value lteration Work?

e Each iteration maps one value function V to another, Vn

« We can think about this map as a function B : RI¥l - RIS
* Here we are representing a value function as a vector

V(1)

20 A

10 A

-10 41

—20 4

Why Does Value lteration Work?

e Each iteration maps one value function V to another, Vn

« We can think about this map as a function B : RI¥l - RIS
* Here we are representing a value function as a vector

 Example: |§| = 2. Three different initializations.

I[teration O Ilteration O I[teration O

\ 4

20 A 201

10 1 10 1

®
V(1)
V(1)

-10 P —10

—20 1 —20 1

—I20 —:II.O (I) 1|D 2ID -20 -10 0 10 20 -20 -10 0 10

20

Why Does Value lteration Work?

* B is a contraction mapping™
* There exists some k s.t. for any two inputs v, v/,
distance(B(v),B(v")) < k distance(v,v"). For us, distance is Le,-norm.
That is, all pairs of points get closer after the mapping is applied.

*Short proof: http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf Slide 19.

http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf

Why Does Value lteration Work?

* B is a contraction mapping™
* There exists some k s.t. for any two inputs v, v/,

distance(B(v),B(v")) < k distance(v,v").
That is, all pairs of points get closer after the mapping is applied.

 Theorem (Banach fixed point theorem): If B is a contraction
mapping, it has a unique fixed point.

* For us, that unique fixed point is the optimal value function.

*Short proof: http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf Slide 19.

http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf

Policy Iteration vs. Value lteration

* P| typically needs fewer iterations than VI to converge
« However, each iteration of Pl requires policy evaluation

* Modified Pl (Putterman & Shin, 1978) performs a cheaper
approximate policy evaluation. Often the best in practice

« But with modern compute, if you have an MDP that is practically
too big for VI, then it's probably too big for Pl and MPI as well,
and you need approximate methods

Linear Programming

Compute value function by solving linear program:

Minimize V' (s) for all s
subjectto V(s) > > . .s P(s' | s,a)[R(s,a,s’) +~V(s')]

Less widely used. But, tightest complexity bounds!

And, the basis for some other approximate methods, with
connections to other communities.

Next Time

« What if § is very large?
* [f we know our current state, could we leverage it?

« How can we incorporate heuristics?

	Slide 1: Offline Planning in MDPs
	Slide 2: Building Toward MDPs
	Slide 3: Markov Chains
	Slide 4: Markov Chains
	Slide 5: Markov Chains
	Slide 6: Markov Chains
	Slide 7: Markov Chain PGM
	Slide 8: Example
	Slide 9: Markov Reward Processes
	Slide 10: MRP PGM (Influence Diagram)
	Slide 11: Time Horizons
	Slide 12: Time Horizons
	Slide 13: Time Horizons
	Slide 14: Example
	Slide 15
	Slide 16: Utilities
	Slide 17: Utilities
	Slide 18: Utilities
	Slide 19: Utilities
	Slide 20: Utilities
	Slide 21: Utilities
	Slide 22: Preferences, Axioms of Utility Theory
	Slide 23: Preferences, Axioms of Utility Theory
	Slide 24: Preferences, Axioms of Utility Theory
	Slide 25: Our Agent’s Utility vs Our Own
	Slide 26: Utilities
	Slide 27
	Slide 28: Value Functions
	Slide 29: Revised MEU for MRPs
	Slide 30: Revised MEU for MRPs
	Slide 31: Additive Utility Functions
	Slide 32: Additive Utility Functions
	Slide 33: Value Functions with Additive Utility
	Slide 34: Value Functions with Additive Utility
	Slide 35: Bellman Equations: Convenient Recursions
	Slide 36: Bellman Equations: Convenient Recursions
	Slide 37: Bellman Equations: Convenient Recursions
	Slide 38: Recap
	Slide 39: Toward Sequential Decision-Making
	Slide 40: Markov Decision Processes
	Slide 41: Markov Decision Processes
	Slide 42: Markov Decision Processes
	Slide 43: MDP PGM (Influence Diagram)
	Slide 44: Example: Marshmallows
	Slide 45: Example: Zits
	Slide 46: Example: Chase
	Slide 47: Policies
	Slide 48: Policies
	Slide 49: Policy + MDP = MRP
	Slide 50: Policy + MDP = MRP
	Slide 51: Policy + MDP = MRP
	Slide 52
	Slide 53: Value Functions for Policies
	Slide 54: Value Functions for Policies
	Slide 55: Bellman Equations: Convenient Recursions
	Slide 56: Bellman Equations: Convenient Recursions
	Slide 57: Bellman Equations: Convenient Recursions
	Slide 58: Planning: Finding an Optimal Policy
	Slide 59: Stupidest Possible Algorithm (SPA) for MDP Planning
	Slide 60: Stupidest Possible Algorithm (SPA) for MDP Planning
	Slide 61: Policy Iteration: A Less Stupid Algorithm
	Slide 62: Policy Iteration: A Less Stupid Algorithm
	Slide 63: Policy Iteration: A Less Stupid Algorithm
	Slide 64: Action-Value (Q) Functions
	Slide 65: Policy Iteration: Refactored
	Slide 66: Avoiding Policy Evaluation
	Slide 67: Value Function  Policy
	Slide 68: Value Function  Policy
	Slide 69: Value Function  Policy
	Slide 70: Value Function  Policy
	Slide 71: Bellman Equations: Convenient Recursions
	Slide 72: Bellman Equations: Convenient Recursions
	Slide 73: Compute Optimal Value Functions: Finite Horizon
	Slide 74: Compute Optimal Value Functions: Finite Horizon
	Slide 75: Example: Marshmallows
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Bellman Backups
	Slide 82: Compute Optimal Value Functions: Finite Horizon
	Slide 83: Bellman Equations: Convenient Recursions
	Slide 84: Value Iteration
	Slide 85
	Slide 86: Value Iteration (Continued)
	Slide 87: Value Iteration (Continued)
	Slide 88: Value Iteration (Continued)
	Slide 89: Value Iteration (Continued)
	Slide 90: Value Iteration (Continued)
	Slide 91: Why Does Value Iteration Work?
	Slide 92: Why Does Value Iteration Work?
	Slide 93: Why Does Value Iteration Work?
	Slide 94: Why Does Value Iteration Work?
	Slide 95: Policy Iteration vs. Value Iteration
	Slide 96: Linear Programming
	Slide 97: Next Time

