
Offline Planning in MDPs

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025

Building Toward MDPs

Tom Silver - Princeton University - Fall 2025 2

Markov Chains

Markov chain: sequence of random variables 𝑆0, 𝑆1, 𝑆2, … , with
the same domain 𝒮 s.t. Markov property holds:

 for all 𝑡 ≥ 0. 𝑃 𝑆𝑡+1 𝑆𝑡 , 𝑆𝑡−1, … = 𝑃(𝑆𝑡+1 ∣ 𝑆𝑡).

“The future is independent of the past given the present.”

Tom Silver - Princeton University - Fall 2025 3

Markov Chains

Markov chain: sequence of random variables 𝑆0, 𝑆1, 𝑆2, … , with
the same domain 𝒮 s.t. Markov property holds:

 for all 𝑡 ≥ 0. 𝑃 𝑆𝑡+1 𝑆𝑡 , 𝑆𝑡−1, … = 𝑃(𝑆𝑡+1 ∣ 𝑆𝑡).

“The future is independent of the past given the present.”

Each 𝑆𝑡 represents a state

The state space

Tom Silver - Princeton University - Fall 2025 4

Markov Chains

Markov chain: sequence of random variables 𝑆0, 𝑆1, 𝑆2, … , with
the same domain 𝒮 s.t. Markov property holds:

 for all 𝑡 ≥ 0. 𝑃 𝑆𝑡+1 𝑆𝑡 , 𝑆𝑡−1, … = 𝑃(𝑆𝑡+1 ∣ 𝑆𝑡).

“The future is independent of the past given the present.”

Assuming discrete
time

Tom Silver - Princeton University - Fall 2025 5

Markov Chains

Transition distribution for time 𝑡: 𝑃𝑡 𝑆𝑡+1 𝑆𝑡

Stationary Markov chain: for all 𝑡, 𝑡′, 𝑃𝑡 = 𝑃𝑡′.

“The transition distribution doesn’t change over time.”

Notation for stationary MCs omits subscript: 𝑃 𝑆𝑡+1 𝑆𝑡

a.k.a. time-homogeneous

Tom Silver - Princeton University - Fall 2025 6

Markov Chain PGM

Tom Silver - Princeton University - Fall 2025 7

Example
How would we represent this
scenario as a Markov Chain?

Tom Silver - Princeton University - Fall 2025 8

Markov Reward Processes

Markov reward process: Markov chain + reward function

Reward function: 𝑅: 𝒮 × 𝒮 → ℝ (higher is better)

R 𝑠𝑡 , 𝑠𝑡+1 ↦ 𝑟 is the scalar reward

𝑅(𝑆𝑡 , 𝑆𝑡+1) is a random variable

Tom Silver - Princeton University - Fall 2025 9

MRP PGM
(Influence Diagram)

Influence diagrams are
an extension of Bayes

nets that include
“reward nodes”

(diamonds)

Tom Silver - Princeton University - Fall 2025 10

Time Horizons

• Finite horizon: 𝑆0, 𝑆1, … , 𝑆𝐻.
• Infinite horizon: 𝑆0, 𝑆1, …

𝐻 is the horizon

Tom Silver - Princeton University - Fall 2025 11

Time Horizons

• Finite horizon: 𝑆0, 𝑆1, … , 𝑆𝐻.
• Infinite horizon: 𝑆0, 𝑆1, …

• Indefinite horizon:
• Let 𝒟 ⊂ 𝒮 be a set of done states.
• The process terminates whenever a state in 𝒟 is encountered.

a.k.a. sink states, terminal states,
absorbing states

Tom Silver - Princeton University - Fall 2025 12

Time Horizons

• Finite horizon: 𝑆0, 𝑆1, … , 𝑆𝐻.
• Infinite horizon: 𝑆0, 𝑆1, …

• Indefinite horizon:
• Let 𝒟 ⊂ 𝒮 be a set of done states.
• The process terminates whenever a state in 𝒟 is encountered.

For indefinite horizon,
usually assume that we
will reach a done state

with probability 1.

Tom Silver - Princeton University - Fall 2025 13

Example

How would we represent this
scenario as an MRP?

Tom Silver - Princeton University - Fall 2025 14

MRP 1 MRP 2

Tom Silver - Princeton University - Fall 2025 15

Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Tom Silver - Princeton University - Fall 2025 16

Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

What would each agent’s utility look like?

I need money now!
ASAP!!!

If I get money now,
a bully would take
it. Better to wait.

Tom Silver - Princeton University - Fall 2025 17

Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

What would each agent’s utility look like?

I just want to know
what it feels like to
score big. Just once

is enough.

I really, really don’t
want to fail.

Tom Silver - Princeton University - Fall 2025 18

Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a
rational agent should prefer the one that has larger expected
utility, where the expectation is over (state, reward) trajectories.

Tom Silver - Princeton University - Fall 2025 19

Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a
rational agent should prefer the one that has larger expected
utility, where the expectation is over (state, reward) trajectories.

Note: for the moment, we’re assuming
some distribution over initial states.

Tom Silver - Princeton University - Fall 2025 20

Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a
rational agent should prefer the one that has larger expected
utility, where the expectation is over (state, reward) trajectories.

Seems reasonable, but is this the only option?

Tom Silver - Princeton University - Fall 2025 21

Preferences, Axioms of Utility Theory

• Suppose an agent has preferences:
• 𝐴 > 𝐵 (the agent prefers 𝐴 over 𝐵)
• 𝐴 ~ 𝐵 (the agent is indifferent)

• 𝐴 ≥ 𝐵 (the agent prefers 𝐴 over 𝐵 or is indifferent)

What are A and B here?
Formally: lotteries.

For our purposes: MRPs.

Tom Silver - Princeton University - Fall 2025 22

Preferences, Axioms of Utility Theory

• Suppose an agent has preferences:
• 𝐴 > 𝐵 (the agent prefers 𝐴 over 𝐵)
• 𝐴 ~ 𝐵 (the agent is indifferent)

• 𝐴 ≥ 𝐵 (the agent prefers 𝐴 over 𝐵 or is indifferent)

• Axioms of utility theory:
• Orderability: exactly one of 𝐴 > 𝐵, 𝐵 > 𝐴, or 𝐴 ~ 𝐵 holds for all 𝐴, 𝐵.
• Transitivity: if 𝐴 > 𝐵 and 𝐵 > 𝐶 then 𝐴 > 𝐶.
• Four other more technical ones using lottery definition: continuity,

substitutability, monotonicity, decomposability.

Tom Silver - Princeton University - Fall 2025 23

Preferences, Axioms of Utility Theory

Theorem (von Neumann & Morgenstern, 1944): Axioms of utility
⇒ maximum expected utility principle.

So, if we accept the axioms, then MEU is what we need.

Tom Silver - Princeton University - Fall 2025 24

Our Agent’s Utility vs Our Own

Value Alignment Problem
• Need to be very careful &

thoughtful about utility
definitions!

• Difficult to capture all societal
norms

• Famous example: paperclip
maximizer (Bostrom 2003)

• Right: another example
(OpenAI 2016)

Tom Silver - Princeton University - Fall 2025 25

Utilities

A utility for an MRP is a function 𝑈 𝑟1, 𝑟2, … , ↦ 𝑢 ∈ ℝ.
Utility is “what we really want to maximize.”

Maximum expected utility (MEU) principle: given two MRPs, a
rational agent should prefer the one that has larger expected
utility, where the expectation is over (state, reward) trajectories.

Note: for the moment, we’re
assuming some distribution over

initial states.

But MRPs don’t have an initial
state distribution! Let’s revisit…

Tom Silver - Princeton University - Fall 2025 26

MRP 1 MRP 2

Initial state 1 Initial state 2

Tom Silver - Princeton University - Fall 2025 27

Value Functions

The value function 𝑉𝑡 : 𝒮 → ℝ for an MRP and utility gives the
expected conditional utility for starting at 𝑆𝑡 = 𝑠:

𝑉𝑡 𝑠 = 𝐸𝑆𝑡+1,…,𝑆𝐻∣𝑆𝑡=𝑠[𝑈(𝑅𝑡+1, 𝑅𝑡+2 …)]

Tom Silver - Princeton University - Fall 2025 28

Revised MEU for MRPs

Given two MRPs with the same state space 𝒮, let 𝑉𝑡
1, 𝑉𝑡

2 be the
respective value functions.

Revised MEU: MRP 1 ≥ MRP 2 if ∀ 𝑡, 𝑠. 𝑉𝑡
1 𝑠 ≥ 𝑉𝑡

2(𝑠).

“I prefer MRP 1 over MRP2 (or am indifferent) if for any time and state, the
expected conditional utility for MRP1 is at least that of MRP2.”

Tom Silver - Princeton University - Fall 2025 29

Revised MEU for MRPs

Given two MRPs with the same state space 𝒮, let 𝑉𝑡
1, 𝑉𝑡

2 be the
respective value functions.

Revised MEU: MRP 1 ≥ MRP 2 if ∀ 𝑡, 𝑠. 𝑉𝑡
1 𝑠 ≥ 𝑉𝑡

2(𝑠).

“I prefer MRP 1 over MRP2 (or am indifferent) if for any time and state, the
expected conditional utility for MRP1 is at least that of MRP2.”

How to evaluate in practice?

Tom Silver - Princeton University - Fall 2025 30

Additive Utility Functions

We will now focus on additive utility functions:

• Finite horizon: 𝑈 𝑟1, 𝑟2, … , 𝑟𝐻 = σ 𝑟𝑡 .

Tom Silver - Princeton University - Fall 2025 31

Additive Utility Functions

We will now focus on additive utility functions:

• Finite horizon: 𝑈 𝑟1, 𝑟2, … , 𝑟𝐻 = σ 𝑟𝑡 .

• Infinite or indefinite horizon: 𝑈 𝑟1, 𝑟2, … = σ 𝛾𝑡𝑟𝑡
 where 𝛾 ∈ [0, 1] is a temporal discount factor.

Infinite horizons: 𝛾 ∈ 0, 1

Tom Silver - Princeton University - Fall 2025 32

Value Functions with Additive Utility

With additive utility, value functions give expected cumulative
rewards:

𝑉𝑡 𝑠 = 𝐸𝑆𝑡+1,…,𝑆𝐻∣𝑆𝑡=𝑠[𝑅𝑡+1 + ⋯ + 𝑅𝐻] (finite horizon)

Tom Silver - Princeton University - Fall 2025 33

Value Functions with Additive Utility

With additive utility, value functions give expected cumulative
rewards:

𝑉𝑡 𝑠 = 𝐸𝑆𝑡+1,…,𝑆𝐻∣𝑆𝑡=𝑠[𝑅𝑡+1 + ⋯ + 𝑅𝐻] (finite horizon)

𝑉 𝑠 = 𝐸𝑆𝑡+1,…∣𝑆𝑡=𝑠 𝑅𝑡+2 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 … (infinite horizon)
No need for time subscripts in infinite horizon case

Tom Silver - Princeton University - Fall 2025 34

Bellman Equations: Convenient Recursions
Finite Horizon

Infinite Horizon

Immediate reward Future rewards

𝑉𝑡 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠)[𝑅 𝑠, 𝑠′ + 𝑉𝑡+1 𝑠′]

𝑉𝐻 𝑠 = 0

𝑉 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠)[𝑅 𝑠, 𝑠′ + 𝛾𝑉 𝑠′]

Tom Silver - Princeton University - Fall 2025 35

Bellman Equations: Convenient Recursions
Finite Horizon

Can solve for 𝑉𝑡 using dynamic programming.
Compute “backwards” from 𝑉𝐻.

𝑉𝑡 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠)[𝑅 𝑠, 𝑠′ + 𝑉𝑡+1 𝑠′]

𝑉𝐻 𝑠 = 0

Tom Silver - Princeton University - Fall 2025 36

Bellman Equations: Convenient Recursions

Infinite Horizon

This is a system of linear equations with 𝒮 unknowns and 𝒮
equations. Can solve for 𝑉 using linear algebra (≈ cubic time).

𝑉 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠)[𝑅 𝑠, 𝑠′ + 𝛾𝑉 𝑠′]

Tom Silver - Princeton University - Fall 2025 37

Recap

How to choose an MRP?

1. Solve Bellman equations to
get value functions.

2. Check preference property:
does one value function
“dominate” the other, across
all states?

MRP 1 MRP 2

Now assuming:
• Shared state space
• Additive utility

Tom Silver - Princeton University - Fall 2025 38

Toward Sequential Decision-Making

Given a choice between MRPs, we now know how to pick our
favorite one.

This is one-time decision making, at the MRP level.

What if we get to make decisions at each time step, influencing the
distribution over next states?

Tom Silver - Princeton University - Fall 2025 39

Markov Decision Processes

Markov decision process (MDP): MRP + actions.
• State space 𝒮

• Action space 𝒜

• Reward function 𝑅 ∶ 𝒮 × 𝒜 × 𝒮 → ℝ

• Transition distribution 𝑃(𝑆𝑡+1 ∣ 𝐴𝑡 , 𝑆𝑡)

𝑎𝑡 is action at time 𝑡
𝐴𝑡 is random variable for action at time 𝑡

Tom Silver - Princeton University - Fall 2025 40

Markov Decision Processes

Markov decision process (MDP): MRP + actions.
• State space 𝒮

• Action space 𝒜

• Reward function 𝑅 ∶ 𝒮 × 𝒜 × 𝒮 → ℝ

• Transition distribution 𝑃(𝑆𝑡+1 ∣ 𝐴𝑡 , 𝑆𝑡)

Reward now depends on action

Transitions now depends on action

Tom Silver - Princeton University - Fall 2025 41

Markov Decision Processes

Markov decision process (MDP): MRP + actions.
• State space 𝒮

• Action space 𝒜

• Reward function 𝑅 ∶ 𝒮 × 𝒜 × 𝒮 → ℝ

• Transition distribution 𝑃(𝑆𝑡+1 ∣ 𝐴𝑡 , 𝑆𝑡)

Assumption until we say otherwise:
 The state space 𝒮 and action space 𝒜 are finite.

Not generally true for MDPs.
Just convenient for algorithms.

Tom Silver - Princeton University - Fall 2025 42

MDP PGM
(Influence Diagram)

Influence diagrams
can also include
“decision nodes”

(squares)

Tom Silver - Princeton University - Fall 2025 43

Example: Marshmallows
• States: (hunger level, marshmallow remains)

• Hunger level: 0, 1, 2 (higher is hungrier)
• Marshmallow remains: True or False

• Actions: eat marshmallow, or wait
• Horizon: finite (horizon 𝐻 = 4)
• Rewards: Negative hunger level squared (on next state)
• Transition distribution:

• Marshmallow remains updated in obvious way
• If wait:

• With probability 0.25, hunger level increases by 1
• Otherwise, hunger level stays the same

• If eat (and marshmallow remains):
• With probability 1, hunger level set to 0

• If eat (and marshmallow gone):
• Same as waiting

Tom Silver - Princeton University - Fall 2025 44

Example: Zits
• States: Number of zits on my face: 0, 1, 2, 3, 4
• Actions: apply zit cream, or just sleep
• Horizon: infinite (Temporal discount: 𝛾 = 0.9)
• Rewards:

• R(s, apply, s’) = -(# zits on my face in s’) - 1
• R(s, sleep, s’) = -(# zits on my face in s’)

• Transition distribution:
• If apply:

• With probability 0.8, all zits gone (0)
• With probability 0.2, all zits grow (4)

• If sleep:
• With probability 0.4, 1 more zit grows
• With probability 0.6, 1 zit disappears

Tom Silver - Princeton University - Fall 2025 45

Example: Chase

• States: (robot pos, rabbit pos)
• Actions: move robot up, down, left, right
• Horizon: indefinite

• Done states: robot pos = rabbit pos
• Temporal discount: 𝛾 = 0.9

• Rewards:
• +1 for transition that ends in done
• 0 otherwise

• Transition distribution:
• robot pos is updated deterministically
• rabbit stays in same place with prob 0.5
• otherwise jumps to neighboring pos

with uniform prob

Tom Silver - Princeton University - Fall 2025 46

Policies

A policy is a function from states to actions.

Can be stationary: 𝜋 ∶ 𝒮 → 𝒜

or time-dependent: 𝜋𝑡 ∶ 𝒮 → 𝒜

Tom Silver - Princeton University - Fall 2025 47

Policies

A policy is a function from states to actions.

Can be stationary: 𝜋 ∶ 𝒮 → 𝒜

or time-dependent: 𝜋𝑡 ∶ 𝒮 → 𝒜

MDP Planning: Find a
“good” policy.

What exactly does
“good” mean?

Tom Silver - Princeton University - Fall 2025 48

Policy + MDP = MRP

• Consider the process of generating states and rewards by
following a policy 𝜋 in an MDP

• This process is an MRP!

Tom Silver - Princeton University - Fall 2025 49

Policy + MDP = MRP

• Consider the process of generating states and rewards by
following a policy 𝜋 in an MDP

• This process is an MRP!

• MRP transition distribution: 𝑃(𝑠′ ∣ 𝑠) = 𝑃(𝑠′ ∣ 𝑠, 𝜋 𝑠)

From the MDP

Tom Silver - Princeton University - Fall 2025 50

Policy + MDP = MRP

• Consider the process of generating states and rewards by
following a policy 𝜋 in an MDP

• This process is an MRP!

• MRP transition distribution: 𝑃(𝑠′ ∣ 𝑠) = 𝑃(𝑠′ ∣ 𝑠, 𝜋 𝑠)

• MRP reward function: 𝑅 𝑠, 𝑠′ = 𝑅(𝑠, 𝜋 𝑠 , 𝑠′)

From the MDP

From the MDP

Tom Silver - Princeton University - Fall 2025 51

MRP 1 MRP 2Policy 1 Policy 2

MDP

=

Tom Silver - Princeton University - Fall 2025 52

Value Functions for Policies

The value function 𝑉𝑡
𝜋: 𝒮 → ℝ for a policy 𝜋 in an MDP is the value

function for the induced MRP.

In other words, 𝑉𝑡
𝜋(𝑠) gives the expected conditional utility for

starting at 𝑆𝑡 = 𝑠 and following 𝜋.

Tom Silver - Princeton University - Fall 2025 53

Value Functions for Policies

The value function 𝑉𝑡
𝜋: 𝒮 → ℝ for a policy 𝜋 in an MDP is the value

function for the induced MRP.

In other words, 𝑉𝑡
𝜋 gives the expected conditional utility for

starting at 𝑆𝑡 = 𝑠 and following 𝜋.

Policy evaluation:
computing 𝑉𝜋 given 𝜋.

Tom Silver - Princeton University - Fall 2025 54

Bellman Equations: Convenient Recursions

𝑉𝑡
𝜋 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝜋(𝑠))[𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝑉𝑡+1
𝜋 𝑠′]

𝑉𝐻
𝜋 𝑠 = 0

𝑉𝜋 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝜋(𝑠))[𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋 𝑠′]

Finite Horizon

Infinite Horizon

Tom Silver - Princeton University - Fall 2025 55

Bellman Equations: Convenient Recursions

𝑉𝑡
𝜋 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝜋(𝑠))[𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝑉𝑡+1
𝜋 𝑠′]

𝑉𝐻
𝜋 𝑠 = 0

Finite Horizon

Can solve for 𝑉𝑡 using dynamic programming.
Compute “backwards” from 𝑉𝐻.

Tom Silver - Princeton University - Fall 2025 56

Bellman Equations: Convenient Recursions

𝑉𝜋 𝑠 = ෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝜋(𝑠))[𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝜋 𝑠′]

Infinite Horizon

This is a system of linear equations with 𝒮 unknowns and 𝒮
equations. Can solve for 𝑉 using linear algebra (≈ cubic time).

Tom Silver - Princeton University - Fall 2025 57

Planning: Finding an Optimal Policy

Optimal value function: 𝑉∗ 𝑠 = max
𝜋

 𝑉𝜋(𝑠)

Optimal policy: 𝜋∗ s.t. ∀𝑠 ∈ 𝒮. 𝑉𝜋∗
𝑠 = 𝑉∗(𝑠).

“A policy is optimal if it always takes an action that leads to
maximum expected utility.”

Tom Silver - Princeton University - Fall 2025 58

Stupidest Possible Algorithm (SPA) for
MDP Planning

Tom Silver - Princeton University - Fall 2025 59

Stupidest Possible Algorithm (SPA) for
MDP Planning

Review: how would we check this?

Tom Silver - Princeton University - Fall 2025 60

Policy Iteration: A Less Stupid Algorithm

“Find a policy
improvement.”

Tom Silver - Princeton University - Fall 2025 61

Policy Iteration: A Less Stupid Algorithm

Guaranteed to converge to
an optimal policy.

Tom Silver - Princeton University - Fall 2025 62

Policy Iteration: A Less Stupid Algorithm

This is ugly, let’s refactor

Tom Silver - Princeton University - Fall 2025 63

Action-Value (Q) Functions

The action-value function 𝑄𝑡
𝜋: 𝒮 × 𝒜 → ℝ gives the expected

cumulative rewards for starting at 𝑆𝑡 = 𝑠, taking action 𝐴𝑡 = 𝑎, and
then following 𝜋:

𝑄𝑡
𝜋 𝑠, 𝑎 = 𝐸𝑆𝑡+1∣𝑆𝑡=𝑠, 𝐴𝑡=𝑎 [𝑅𝑡 + 𝑉𝑡+1

𝜋 𝑆𝑡+1]

Tom Silver - Princeton University - Fall 2025 64

Policy Iteration: Refactored

Tom Silver - Princeton University - Fall 2025 65

Avoiding Policy Evaluation

• Policy iteration requires evaluating the Bellman equations in the
inner loop, which can be expensive

• Rather than keeping track of a policy, what if we compute an
optimal value function directly?

• Once we have the optimal value function, we can compute a
corresponding optimal policy at the end

Tom Silver - Princeton University - Fall 2025 66

Value Function → Policy

Given an action-value function 𝑄, a greedy policy is:

𝜋 𝑠 = argmax𝑎 𝑄(𝑠, 𝑎)

Tom Silver - Princeton University - Fall 2025 67

Value Function → Policy

Given an action-value function 𝑄, a greedy policy is:

𝜋 𝑠 = argmax𝑎 𝑄(𝑠, 𝑎)

If we have an optimal action-value function 𝑄∗, the greedy policy
is an optimal policy:

𝜋∗ 𝑠 = argmax𝑎 𝑄
∗(𝑠, 𝑎)

Tom Silver - Princeton University - Fall 2025 68

Value Function → Policy

Given an action-value function 𝑄, a greedy policy is:

𝜋 𝑠 = argmax𝑎 𝑄(𝑠, 𝑎)

If we have an optimal action-value function 𝑄∗, the greedy policy
is an optimal policy:

𝜋∗ 𝑠 = argmax𝑎 𝑄
∗(𝑠, 𝑎) Are greedy policies unique?

Tom Silver - Princeton University - Fall 2025 69

Value Function → Policy

Given an action-value function 𝑄, a greedy policy is:

𝜋 𝑠 = argmax𝑎 𝑄(𝑠, 𝑎)

If we have an optimal action-value function 𝑄∗, the greedy policy
is an optimal policy:

𝜋∗ 𝑠 = argmax𝑎 𝑄
∗(𝑠, 𝑎)

So, how can we directly compute 𝑉∗ /
𝑄∗?

Tom Silver - Princeton University - Fall 2025 70

Bellman Equations: Convenient Recursions

𝑉𝑡
∗ 𝑠 = max

𝑎
෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝑎)[𝑅 𝑠, 𝑎, 𝑠′ + 𝑉𝑡+1
∗ 𝑠′]

𝑉𝐻
∗ 𝑠 = 0

Finite Horizon

Tom Silver - Princeton University - Fall 2025 71

Bellman Equations: Convenient Recursions

𝑉𝑡
∗ 𝑠 = max

𝑎
෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝑎)[𝑅 𝑠, 𝑎, 𝑠′ + 𝑉𝑡+1
∗ 𝑠′]

𝑉𝐻
∗ 𝑠 = 0

Finite Horizon

Can solve for 𝑉𝑡
∗ using dynamic programming.

Compute “backwards” from 𝑉𝐻
∗ .

Tom Silver - Princeton University - Fall 2025 72

Compute Optimal Value Functions: Finite Horizon

Tom Silver - Princeton University - Fall 2025 73

Compute Optimal Value Functions: Finite Horizon

Tom Silver - Princeton University - Fall 2025 74

What’s the asymptotic
complexity?

Example of dynamic
programming

Example: Marshmallows
• States: (hunger level, marshmallow remains)

• Hunger level: 0, 1, 2 (higher is hungrier)
• Marshmallow remains: True or False

• Actions: eat marshmallow, or wait
• Horizon: finite (horizon 𝐻 = 4)
• Rewards: Negative hunger level squared (on next state)
• Transition distribution:

• Marshmallow remains updated in obvious way
• If wait:

• With probability 0.25, hunger level increases by 1
• Otherwise, hunger level stays the same

• If eat (and marshmallow remains):
• With probability 1, hunger level set to 0

• If eat (and marshmallow gone):
• Same as waiting

Tom Silver - Princeton University - Fall 2025 75

Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Tom Silver - Princeton University - Fall 2025 76

Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Iteration (H=3)

• V[3][0T] = max(

 … // Eat

 … // Wait

)

Tom Silver - Princeton University - Fall 2025 77

Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Iteration (H=3)

• V[3][0T] = max(

 P(0F | E, 0T)(R(0T, E, 0F) + V[4][0F])

 … // Wait

)

Zero-prob transitions
not written

Eat → 0F

Tom Silver - Princeton University - Fall 2025 78

Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Iteration (H=3)

• V[3][0T] = max(

 P(0F | E, 0T)(R(0T, E, 0F) + V[4][0F])

 P(0T | W, 0T)(R(0T, W, 0T) + V[4][0T]) + P(1T | W, 0T)(R(0T, W, 1T) + V[4][1T])

)

Eat → 0F

Wait → 0T Wait → 1T

Tom Silver - Princeton University - Fall 2025 79

Initialization (H=4)

• V[4][0T] = 0, V[4][1T] = 0, V[4][2T] = 0, V[4][0F] = 0, V[4][1F] = 0, V[4][2F] = 0

Iteration (H=3)

• V[3][0T] = max(

 P(0F | E, 0T)(R(0T, E, 0F) + V[4][0F])

 P(0T | W, 0T)(R(0T, W, 0T) + V[4][0T]) + P(1T | W, 0T)(R(0T, W, 1T) + V[4][1T])

)

= max(

 1 * (0 + 0)
 0.75 * (0 + 0) + 0.25 * (-1 + 0)

) = 0

...

Tom Silver - Princeton University - Fall 2025 80

Bellman Backups

The meat of the value function update was this:

Important enough that we will give it a name: Bellman backup

Bellman, because of the Bellman equation.

Backup, because we’re looking one step ahead and “backing up”.

Tom Silver - Princeton University - Fall 2025 81

Compute Optimal Value Functions: Finite Horizon

Refactored

Tom Silver - Princeton University - Fall 2025 82

Bellman Equations: Convenient Recursions

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃(𝑠′ ∣ 𝑠, 𝑎)[𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′]

Infinite Horizon

No longer linear! What to do?
Idea: iteratively “plug in” the RHS to update the LHS.

Tom Silver - Princeton University - Fall 2025 83

Value Iteration

Tom Silver - Princeton University - Fall 2025 84

Tom Silver - Princeton University - Fall 2025 85

Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?

Tom Silver - Princeton University - Fall 2025 86

Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
• 𝑂(𝒮 2 𝒜)

Tom Silver - Princeton University - Fall 2025 87

Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
• 𝑂(𝒮 2 𝒜)

• How should we check convergence?
• For theoretical guarantees, use max

𝑠
 𝑉 𝑠 − 𝑉𝑛 𝑠 < 𝜖.

Tom Silver - Princeton University - Fall 2025 88

Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
• 𝑂(𝒮 2 𝒜)

• How should we check convergence?
• For theoretical guarantees, use max

𝑠
 𝑉 𝑠 − 𝑉𝑛 𝑠 < 𝜖.

• Is this guaranteed to converge to the optimal value function?
• (Thm) Yes.

Tom Silver - Princeton University - Fall 2025 89

Value Iteration (Continued)

• What’s the asymptotic complexity per-iteration?
• 𝑂(𝒮 2 𝒜)

• How should we check convergence?
• For theoretical guarantees, use max

𝑠
 𝑉 𝑠 − 𝑉𝑛 𝑠 < 𝜖.

• Is this guaranteed to converge to the optimal value function?
• (Thm) Yes.

• Does the initialization matter?
• Asymptotically, no, but it can affect the rate of convergence. (Extreme

case: initialize to optimal.)

Tom Silver - Princeton University - Fall 2025 90

Why Does Value Iteration Work?

• Each iteration maps one value function 𝑉 to another, 𝑉𝑛

• We can think about this map as a function 𝐵 ∶ ℝ|𝒮| → ℝ|𝒮|

• Here we are representing a value function as a vector

Tom Silver - Princeton University - Fall 2025 91

Why Does Value Iteration Work?

• Each iteration maps one value function 𝑉 to another, 𝑉𝑛

• We can think about this map as a function 𝐵 ∶ ℝ|𝒮| → ℝ|𝒮|

• Here we are representing a value function as a vector

• Example: 𝒮 = 2. Three different initializations.

Tom Silver - Princeton University - Fall 2025 92

Why Does Value Iteration Work?

• 𝐵 is a contraction mapping*
• There exists some 𝑘 s.t. for any two inputs 𝑣, 𝑣′,
 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵(𝑣), 𝐵(𝑣′) ≤ 𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑣′).
That is, all pairs of points get closer after the mapping is applied.

For us, distance is 𝐿∞-norm.

*Short proof: http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf Slide 19.

Tom Silver - Princeton University - Fall 2025 93

http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf

Why Does Value Iteration Work?

• 𝐵 is a contraction mapping*
• There exists some 𝑘 s.t. for any two inputs 𝑣, 𝑣′,
 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵(𝑣), 𝐵(𝑣′) ≤ 𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑣′).
That is, all pairs of points get closer after the mapping is applied.

• Theorem (Banach fixed point theorem): If 𝐵 is a contraction
mapping, it has a unique fixed point.

• For us, that unique fixed point is the optimal value function.

Tom Silver - Princeton University - Fall 2025 94

*Short proof: http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf Slide 19.

http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/mdps.pdf

Policy Iteration vs. Value Iteration

• PI typically needs fewer iterations than VI to converge

• However, each iteration of PI requires policy evaluation

• Modified PI (Putterman & Shin, 1978) performs a cheaper
approximate policy evaluation. Often the best in practice

• But with modern compute, if you have an MDP that is practically
too big for VI, then it’s probably too big for PI and MPI as well,
and you need approximate methods

Tom Silver - Princeton University - Fall 2025 95

Linear Programming

Compute value function by solving linear program:

Less widely used. But, tightest complexity bounds!

And, the basis for some other approximate methods, with
connections to other communities.

Tom Silver - Princeton University - Fall 2025 96

Next Time

• What if 𝒮 is very large?

• If we know our current state, could we leverage it?

• How can we incorporate heuristics?

Tom Silver - Princeton University - Fall 2025 97

	Slide 1: Offline Planning in MDPs
	Slide 2: Building Toward MDPs
	Slide 3: Markov Chains
	Slide 4: Markov Chains
	Slide 5: Markov Chains
	Slide 6: Markov Chains
	Slide 7: Markov Chain PGM
	Slide 8: Example
	Slide 9: Markov Reward Processes
	Slide 10: MRP PGM (Influence Diagram)
	Slide 11: Time Horizons
	Slide 12: Time Horizons
	Slide 13: Time Horizons
	Slide 14: Example
	Slide 15
	Slide 16: Utilities
	Slide 17: Utilities
	Slide 18: Utilities
	Slide 19: Utilities
	Slide 20: Utilities
	Slide 21: Utilities
	Slide 22: Preferences, Axioms of Utility Theory
	Slide 23: Preferences, Axioms of Utility Theory
	Slide 24: Preferences, Axioms of Utility Theory
	Slide 25: Our Agent’s Utility vs Our Own
	Slide 26: Utilities
	Slide 27
	Slide 28: Value Functions
	Slide 29: Revised MEU for MRPs
	Slide 30: Revised MEU for MRPs
	Slide 31: Additive Utility Functions
	Slide 32: Additive Utility Functions
	Slide 33: Value Functions with Additive Utility
	Slide 34: Value Functions with Additive Utility
	Slide 35: Bellman Equations: Convenient Recursions
	Slide 36: Bellman Equations: Convenient Recursions
	Slide 37: Bellman Equations: Convenient Recursions
	Slide 38: Recap
	Slide 39: Toward Sequential Decision-Making
	Slide 40: Markov Decision Processes
	Slide 41: Markov Decision Processes
	Slide 42: Markov Decision Processes
	Slide 43: MDP PGM (Influence Diagram)
	Slide 44: Example: Marshmallows
	Slide 45: Example: Zits
	Slide 46: Example: Chase
	Slide 47: Policies
	Slide 48: Policies
	Slide 49: Policy + MDP = MRP
	Slide 50: Policy + MDP = MRP
	Slide 51: Policy + MDP = MRP
	Slide 52
	Slide 53: Value Functions for Policies
	Slide 54: Value Functions for Policies
	Slide 55: Bellman Equations: Convenient Recursions
	Slide 56: Bellman Equations: Convenient Recursions
	Slide 57: Bellman Equations: Convenient Recursions
	Slide 58: Planning: Finding an Optimal Policy
	Slide 59: Stupidest Possible Algorithm (SPA) for MDP Planning
	Slide 60: Stupidest Possible Algorithm (SPA) for MDP Planning
	Slide 61: Policy Iteration: A Less Stupid Algorithm
	Slide 62: Policy Iteration: A Less Stupid Algorithm
	Slide 63: Policy Iteration: A Less Stupid Algorithm
	Slide 64: Action-Value (Q) Functions
	Slide 65: Policy Iteration: Refactored
	Slide 66: Avoiding Policy Evaluation
	Slide 67: Value Function  Policy
	Slide 68: Value Function  Policy
	Slide 69: Value Function  Policy
	Slide 70: Value Function  Policy
	Slide 71: Bellman Equations: Convenient Recursions
	Slide 72: Bellman Equations: Convenient Recursions
	Slide 73: Compute Optimal Value Functions: Finite Horizon
	Slide 74: Compute Optimal Value Functions: Finite Horizon
	Slide 75: Example: Marshmallows
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Bellman Backups
	Slide 82: Compute Optimal Value Functions: Finite Horizon
	Slide 83: Bellman Equations: Convenient Recursions
	Slide 84: Value Iteration
	Slide 85
	Slide 86: Value Iteration (Continued)
	Slide 87: Value Iteration (Continued)
	Slide 88: Value Iteration (Continued)
	Slide 89: Value Iteration (Continued)
	Slide 90: Value Iteration (Continued)
	Slide 91: Why Does Value Iteration Work?
	Slide 92: Why Does Value Iteration Work?
	Slide 93: Why Does Value Iteration Work?
	Slide 94: Why Does Value Iteration Work?
	Slide 95: Policy Iteration vs. Value Iteration
	Slide 96: Linear Programming
	Slide 97: Next Time

