Online Planning in MDPs

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025



Recap and Preview

 Last lecture, we considered computing policies for MDPs.
* A policy assigns an action to every state in the MDP.

« Complexity of computing/storing a policy is at least linear in the
number of states. For large MDPs, this is a dealbreaker.

* This time, we will suppose that an initial state is known.
 How can we use knowledge of an initial state to reduce complexity?
 Partial policies: partial assignment of states to actions



The Factory and the Wild

Let’'s make a robot startup!
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Planning Online (In the Wild)

Alternatively, we could ship the robot with the
MDP, and have it plan online (in the house).

Don’t plan at all Plan in MDP

Key idea: upon
arrival in the
wild, robot
knows its
current state.

Factory
Shipping



Leveraging Known Current State

Assume that we know current state s, € §
Key idea: only some states are reachable from s,.
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Leveraging Known Current State

Assume that we know current state s, € §
Key idea: only some states are reachable from s,.

A state s is reachable at depth T from state s, if there exists
actions (aq, a4, ..., ar_1) and states (sq, s, ..., S7—1, S) Where

HP(SH_l | s¢,a.) > 0.

Alternatively: a state is reachable if there is some chance that
taking T random actions will land us in that state.

How can we efficiently compute How can we leverage reachable
reachable states? states for planning?



And-Or Directed Acyclic Graphs

Depth 0 o
And-Or DAGs (AODAGS)
e State nodes

* Action nodes v v
Children of state nodes: one Depth 1 @ @ e o
per action

Children of action nodes: one . N
per possible next state

() State node
\/ Action node

Nonzero
probability



Warning: | Just Made Up AODAGs

« Usually, just a tree

* But then we could have
duplicate (state, depth)

* Their subtrees would be
duplicated too

* Everything will be fine -
we may just do redundant
computation

Depth 0

Depth 1 @

() State node
\/ Action node

Y\




Finding Reachable States: Finite Depth

To compute states reachable at depth T from state s, :
1. Construct AODAG todepth T
2. Read off states from depth T



Finding Reachable States: Finite Depth

To compute states reachable at depth T from state s, :
1. Construct AODAG todepth T
2. Read off states from depth T

True or False: if a state is reachable at depth 1, it
must also be reachable at depths > 1.
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Using Reachable States: Finite Depth

Key observation: to choose an optimal action for s,, we only need
to know Qg (sg, a) for all a € A.

We don't need to compute all optimal values.

ldea: modify our DP algorithm for computing value function so
that it only considers the reachable states at each depth.



Using Reachable States: Finite Depth

ExPECTIMAXSEARCH(S0,S, A, P, R, H)

p—
SN O NN WN -

11
12

// a.k.a. ComputeFINITEHORIZONVALUEFUNCTIONONLINE
// Represent values as dictionary V[t][s] = V;"(s).
V =dict(Q
// Base case: final values are 0
for each s € reachable states at depth H
V[H][s] =0
// Recursive step: compute backwards in time
fort=H—-1,H-2,...,0
for each s € reachable states at depth ¢
V[t][s] = BeLLmanBackur(s,V,S, A, P, R,t)
foreachac A
return 'V

a.k.a. expectimax search,
forward search

Warning: don't use this
implementation.
(See later slides)




Expectimax Search on AODAGs

Key ideas:
1. Start at the leaves, work up to the root

2. Annotate states with value function
3. Annotate actions with Q function



Example: Marshmallows

States: (hunger level, marshmallow remains)
* Hunger level: O, 1, 2 (higher is hungrier)
* Marshmallow remains: True or False
Actions: eat marshmallow, or wait
Horizon: finite (horizon H = 4)
Rewards: Negative hunger level squared (on next state)
Transition distribution:
* Marshmallow remains updated in obvious way
o |If wait:
« With probability 0.25, hunger level increases by 1
* Otherwise, hunger level stays the same
* If eat (and marshmallow remains):
« With probability 1, hunger level set to O
« If eat (and marshmallow gone):
* Same as waiting
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Interleaving Planning and Execution

D«
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Interleaving Planning and Execution

D«

In the wild, we can “plan a little”, “execute a little”, repeat.
Receding horizon control (RHC):
1. Plan to H time steps in the future (even if infinite horizon)

2. Execute for Tyep1an < H time steps (often Tyepiqn = 1)

3. Repeat
Execution monitoring:
* Replan only when some criteria are met

« Example: replan if you encounter an “unexpected” state (for
different possible definitions of unexpected).
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Exa m pl e: @ o= Timestep O
Expectimax +RHC ’\
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Exa m pl e: @ o= Timestep 1
Expectimax +RHC /q “

Irepian = 1 Y/ Erecution
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Example:

Expectimax +RHC

Treplan =1

H =72
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Replanning
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Example:

Expectimax +RHC
Treplan =1
H =72

Taking best
action E
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Example:

Expectimax +RHC

Treplan =1

H =72

-0.25

-0.25

Execution!

Environment

updates

-0.25

Timestep 2

0




Example:

Expectimax +RHC

Treplan =1 [/ >£ j<

Etc.




Expectimax Search: Alternative Implementation

Construct tree and compute values simultaneously.

ExPECTIMAXSEARCH(S0, S, A, P, R, H)

1 /4 Alternative implementation; performs DFS over tree
2 return argmax, Q(so,a,0,S, A, P, R, H)

Q(S7 a7 t? S? A? P7 R? H)
1 return) _P(ns|s,a)(R(s,a,ns)+V(ns,t+1,5, A PR, H))

V(s, t,S, A, PR, H)

1 ift=H
2 return 0
3 return max, Q(s,a,t,S, A, P,R, H)




Expectimax Search: Alternative Implementation

Construct tree and compute values simultaneously.

ExPECTIMAXSEARCH(S0, S, A, P, R, H) This is the more common

1 // Alternative implementation; performs DFS over tree implementation of
2 return argmax, Q(so,a,0,S, A, P, R, H) expectimax that you should
probably use!

Q(S7 a7 t? S? '/47 P7 R’ H)

1 return) _P(ns|s,a)(R(s,a,ns)+V(ns,t+1,5, A PR, H))
Returns first action only.

V(s,t,S, A, P,R, H) Assumes replanning
1 ift=H
2 return 0

Note that without caching,
this computes a tree, not
AODAG. (Possible

duplicates.)

3 return max, Q(s,a,t,S, A, P,R, H)




ExPECTIMAXSEARCH| S0,/S, A, P, R, H)

1 // Alternative implementation; performs DFS over tree
2 return argmax, Q(so,a,0,S, A, P, R, H)

Q(S7 a? t7 87 A? P7 R7 H)
1 return ) _P(ns|s,a)(R(s,a,ns)+V(ns,t+1,5, A PR, H))

V(s,t,S, A, PR, H)

1 ift=H

2 return O

3 return max, Q(s,a,t,S, A, P, R, H)
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ExPECTIMAXSEARCH(S0, S, A, P, R, H)

1 // Alternative implementation; performs DFS over tree
2 return argmax, Q(so,a,0,S, A, P, R, H)

Q(S7 a? t7 87 A? P7 R7 H)
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ExPECTIMAXSEARCH(S0, S, A, P, R, H)

1 // Alternative implementation; performs DFS over tree
2 return argmax, Q(so,a,0,S, A, P, R, H)

Q(S7 a? t7 87 A? P7 R7 H)
1 return | P(ns|s,a)(R(s,a,ns)+V(ns,t+1,5, A P, R, H))

V(s,t,S, A, PR, H)

1 ift=H

2 return O
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ExPECTIMAXSEARCH(S0, S, A, P, R, H)

1 // Alternative implementation; performs DFS over tree
2 return argmax, Q(so,a,0,S, A, P, R, H)

Q(S7 a? t7 87 A? P7 R7 H)
1 return ) _P(ns|s,a)(R(s,a,ns)+V(ns,t+1,5, A PR, H))

V(s,t,S, A, PR, H)

1 ift=H

2 return 0

3 return max, Q(s,a,t,S, A, P, R, H)
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Finding Reachable States: Infinite Depth

A state s is reachable from s, in the infinite-horizon case if there
exists some T such that s is reachable at depth T.

How to find these reachable states?



Finding Reachable States: Infinite Depth

A state s is reachable from s, in the infinite-horizon case if there
exists some T such that s is reachable at depth T.

How to find these reachable states?

Build out AODAG, but only create nodes for new states.



Using Reachable States: Infinite Depth

|dea: create an abstract MDP with only the reachable states.

(87 “47 Pv R7 7) abStraCtion> (Sreachablea A: P7 R7 ’Y)

Then, plan in the abstract MDP.



Using Reachable States: Infinite Depth

|dea: create an abstract MDP with only the reachable states.

(87 “47 Pv R7 7) abStraCtion> (Sreachablea “47 P7 R7 ’Y)

Technically, domains of P, R

Then, plan in the abstract MDP. also change.

This is a simple MDP
abstraction. Others exist; active
research area.



When is Reachability Not Enough?

* Sometimes, the number of reachable states is just too large
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* Or if the rewards seen within short horizons are misleading



When is Reachability Not Enough?

* Sometimes, the number of reachable states is just too large

» Receding horizon control may also fail
o |f all rewards within short horizons are trivial
* Or if the rewards seen within short horizons are misleading

e Heuristics to the rescue!
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« For MDPs, a heuristic 1/ is an approximate value function:
V(s) = V(s).



Heuristics for MDPs

« For MDPs, a heuristic 1/ is an approximate value function:
V(s) = V(s).

« A heuristic is admissible if Vs € §.V(s) = V(s)
* Can also weaken this to “for all reachable states”



Expectimax + Heuristic Leaf Evals

|dea: do receding horizon control, with expectimax search.
But! When we get to a leaf node, use V to evaluate it.



Expectimax + Heuristic Leaf Evals

|dea: do receding horizon control, with expectimax search.
But! When we get to a leaf node, use V to evaluate it.

If ¥ were perfect, we could just
doH =1



V(1F)

V(0F© V(T
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Expectimax + Heuristic Leaf Evals

|dea: do receding horizon control, with expectimax search.
But! When we get to a leaf node, use V to evaluate it.

What are benefits / disadvantages
to using a larger H?



Expectimax + Heuristic Leaf Evals

|dea: do receding horizon control, with expectimax search.
But! When we get to a leaf node, use V to evaluate it.

Limitation: we're exhaustively exploring the tree to depth H.
Wouldn't it be better to “focus” our computation?



Real-Time Dynamic Programming (RTDP)

|dea #1: Build only some parts of the AODAG, not all of it.

But which parts?



Real-Time Dynamic Programming (RTDP)
|dea #1: Build only some parts of the AODAG, not all of it.
But which parts?

ldea #2: Use running estimate of the value function, initialized
with the heuristic, to choose parts to expand.

Expand the parts of the AODAG that seem “most promising.”



Real-Time Dynamic Programming (RTDP)
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1. Use the heuristic to initialize a value function estimate.
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Real-Time Dynamic Programming (RTDP):

1. Use the heuristic to initialize a value function estimate.

2. Sample a trajectory from the initial state. Select actions greedily
with respect to value function estimate.



Real-Time Dynamic Programming (RTDP)
Real-Time Dynamic Programming (RTDP):

1. Use the heuristic to initialize a value function estimate.

2. Sample a trajectory from the initial state. Select actions greedily
with respect to value function estimate.

3. Perform Bellman backups for all states in the trajectory

Best to start from the end
and work backwards



Real-Time Dynamic Programming (RTDP)

Real-Time Dynamic Programming (RTDP):

1. Use the heuristic to initialize a value function estimate.

2. Sample a trajectory from the initial state. Select actions greedily
with respect to value function estimate.

3. Perform Bellman backups for all states in the trajectory
4. Repeat from (2)

There are different possible formulations of RTDP. This one is based on “Labeled RTDP: Improving the Convergence of Real-
Time Dynamic Programming.” Bonet & Geffner (2003).



RIDP(so,V,S, A, P,R,~)

1 // Initialize value function estimate with heuristic

FaS

2 V[s|] = V(s) for each s € S (can do this lazily)

3 // Sample trajectories and update until time budget runs out
4 repeat

5 / Turn value function estimate into greedy policy

6 m(s) = argmax, 4 >, . P(ns | s,a)(R(s,a,ns) + yV[ns])
7 // Collect a trajectory from s
8 7 = CorLLECTTRAJECTORY(S0, 7, S, A, P, R, )
9 // Update value function estimate
10 forser
11 V[s| = BeLLmanBackur(s,V,S, A, P, R, )

12 returnV




RTDP(so,V,S, A, P, R, )

p—
O OO NNONUIk WN =

11
12

// Initialize value function estimate with heuristic

FaS

V|s| = V(s) for each s € S (can do this lazily)
/ Sample trajectories and update until time budget runs out
repeat
/ Turn value function estimate into greedy policy
m(s) = argmax, 4 >, . P(ns | s,a)(R(s,a,ns) + yV[ns])
// Collect a trajectory from s
7 = COLLECTTRAJECTORY (80, 7, S, A, P, R, ) Noteowere nan e orzon
// Update value function estimate functions. aFI'sztsof;;EIZ:n versions
forser |
V[s| = BeLLmanBackur(s,V,S, A, P, R, )
return V




Value function
approximation;
initialized to V
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Bellman Backup: 2F
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RTDP Guarantees

* If heuristic is admissible, RTDP will converge to optimal policy
(Barto, Bradtke, & Singh 1995; Bertsekas 1995)

 However, it may converge quite slowly, especially because it will
repeatedly visit “solved” states

 Labelled RTDP (LRTDP) is an extension that avoids revisiting
“solved” states (Bonet & Geffner 2003)



Stochastic Shortest Paths (SSPs)

Stochastic shortest path (SSP):

1. Rewards are nonpositive: R(s,a,s’) < 0fors,s' €S,a € A

2. There are done states D € S Can be understood as goals

3. There is at least one proper policy [1] Necessary because H = o0,y = 1.

[1] This is a technical condition that we will not define here.



Stochastic Shortest Paths (SSPs)

Stochastic shortest path (SSP):

1. Rewards are nonpositive: R(s,a,s’) < 0fors,s' €S,a € A
2. There are done states D € S

3. There is at least one proper policy [1]

As name suggests, we want to find
the shortest path from the current
state to a done state.

[1] This is a technical condition that we will not define here.



Determinization

|dea: given an SSP MDP, convert to deterministic problem.
Then, use heuristic to plan in the deterministic problem.
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|dea: given an SSP MDP, convert to deterministic problem.
Then, use heuristic to plan in the deterministic problem.

Caution! This strategy is approximate; we'’re losing info.



Determinization

|dea: given an SSP MDP, convert to deterministic problem.
Then, use heuristic to plan in the deterministic problem.

Caution! This strategy is approximate; we'’re losing info.

Good news: we can use methods from for informed search, like A*, to
plan in determinized problem.

We'll return to these soon



Most-Likely Outcome Determinization

MLO determinize

<(87 Aa P) R7 Sg)a 30>

where:

? (87“47 Sga S0 f7 C)

. f(S, Cl) — argmaxsregP(s’ | s, a) “Most likely outcome”

* c(s,a,s') = —R(s,a,s’)



Most-Likely Outcome Determinization

MLO determinize

<(Sa Aa P) R7 Sg)a 30>

where:

? (87“47 Sga S0 f7 C)

“Most likely outcome”

* f(s,a) = argmaxsP(s' | s,a)

* c(s,a,s') = —R(s,a,s’)

When might this go badly?



Original
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All Outcomes Determinization

<(Sa Aa P7 R7 Sg)a 80) 0 determimze> (87 Ala Sga S0, fv C)

where:

 foreachs,s" e Sanda € As.t. P(s' | s,a) > 0, thereis an
actiona’ € A’ s.t. f(s,a’) =s"and ¢(s,a’,s’) = —R(s,a,s’).



Original
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AO determinized!
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All Outcomes Determinization

<(Sa Aa P7 R7 Sg)a 80) 9 determimze> (87 Ala Sg: S0, fv C)

where:

 foreachs,s" e Sanda € As.t. P(s' | s,a) > 0, thereis an
actiona’ € A’ s.t. f(s,a’) =s"and ¢(s,a’,s’) = —R(s,a,s’).

When might this go badly?



Determinization

Other strategies convert transition probabilities into rewards, so
the agent is discouraged from pursuing unlikely paths.



Summary

 Known current state? Only some states reachable.

 How to leverage reachability?
* Finite horizon: expectimax search.
* Infinite/indefinite horizon: reachability abstraction, or receding horizon
control + expectimax search
 How to leverage heuristics?
* Expectimax + heuristic leaf evals

 How to avoid exhaustive tree building?
« RTDP
* Determinization



Next Time

« Avoiding big Bellman backups (without determinizing)
» Scaling to larger state spaces

» Using sampling-based techniques
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