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Recap and Preview

• Last lecture, we considered computing policies for MDPs.
• A policy assigns an action to every state in the MDP.

• Complexity of computing/storing a policy is at least linear in the 
number of states. For large MDPs, this is a dealbreaker.

• This time, we will suppose that an initial state is known.
• How can we use knowledge of an initial state to reduce complexity?
• Partial policies: partial assignment of states to actions
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The Factory and the Wild

Let’s make a robot startup!

Factory
Shipping

Wild
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Planning Offline (In the Factory)

If known wild MDP, then we can run value iteration 
offline (in the factory) and compute 𝜋.
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Planning Offline (In the Factory)

If known wild MDP, then we can run value iteration 
offline (in the factory) and compute 𝜋.

Factory
Shipping

Wild

Run value iteration once I know 𝜋! Execute 𝜋
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Planning Offline (In the Factory)

If known wild MDP, then we can run value iteration 
offline (in the factory) and compute 𝜋.

Factory
Shipping

Wild

Run value iteration once I know 𝜋! Execute 𝜋

When might this be 
a good or bad idea?
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Planning Online (In the Wild)

Alternatively, we could ship the robot with the 
MDP, and have it plan online (in the house).
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Planning Online (In the Wild)

Alternatively, we could ship the robot with the 
MDP, and have it plan online (in the house).

Factory
Shipping

Wild

Don’t plan at all
I know 
MDP!

Plan in MDP
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Planning Online (In the Wild)

Alternatively, we could ship the robot with the 
MDP, and have it plan online (in the house).

Factory
Shipping

Wild

Don’t plan at all
I know 
MDP!

Plan in MDP

Key idea: upon 
arrival in the 
wild, robot 
knows its 

current state.
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Leveraging Known Current State
Assume that we know current state 𝑠0 ∈ 𝒮

Key idea: only some states are reachable from 𝑠0.
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Leveraging Known Current State
Assume that we know current state 𝑠0 ∈ 𝒮

Key idea: only some states are reachable from 𝑠0.
A state 𝑠 is reachable at depth 𝑇 from state 𝑠0 if there exists 
actions (𝑎0, 𝑎1, … , 𝑎𝑇−1) and states 𝑠1, 𝑠2, … , 𝑠𝑇−1, 𝑠  where

 ෑ 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡) > 0.
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Leveraging Known Current State
Assume that we know current state 𝑠0 ∈ 𝒮

Key idea: only some states are reachable from 𝑠0.
A state 𝑠 is reachable at depth 𝑇 from state 𝑠0 if there exists 
actions (𝑎0, 𝑎1, … , 𝑎𝑇−1) and states 𝑠1, 𝑠2, … , 𝑠𝑇−1, 𝑠  where

 ෑ 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡) > 0.

Alternatively: a state is reachable if there is some chance that 
taking 𝑇 random actions will land us in that state.
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Leveraging Known Current State
Assume that we know current state 𝑠0 ∈ 𝒮

Key idea: only some states are reachable from 𝑠0.
A state 𝑠 is reachable at depth 𝑇 from state 𝑠0 if there exists 
actions (𝑎0, 𝑎1, … , 𝑎𝑇−1) and states 𝑠1, 𝑠2, … , 𝑠𝑇−1, 𝑠  where

 ෑ 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡) > 0.

Alternatively: a state is reachable if there is some chance that 
taking 𝑇 random actions will land us in that state.

How can we efficiently compute 
reachable states?

How can we leverage reachable 
states for planning?
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And-Or Directed Acyclic Graphs

And-Or DAGs (AODAGs)
• State nodes
• Action nodes

Children of state nodes: one 
per action
Children of action nodes: one 
per possible next state

Nonzero 
probability
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Warning: I Just Made Up AODAGs

• Usually, just a tree

• But then we could have 
duplicate (state, depth)

• Their subtrees would be 
duplicated too

• Everything will be fine – 
we may just do redundant 
computation
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Finding Reachable States: Finite Depth

To compute states reachable at depth 𝑇 from state 𝑠0 :
1. Construct AODAG to depth 𝑇
2. Read off states from depth 𝑇
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Finding Reachable States: Finite Depth

To compute states reachable at depth 𝑇 from state 𝑠0 :
1. Construct AODAG to depth 𝑇
2. Read off states from depth 𝑇

True or False: if a state is reachable at depth 1, it 
must also be reachable at depths > 1.
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Using Reachable States: Finite Depth
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Using Reachable States: Finite Depth
Key observation: to choose an optimal action for 𝑠0, we only need 
to know 𝑄0

∗(𝑠0, 𝑎) for all 𝑎 ∈ 𝒜.

We don’t need to compute all optimal values.
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Using Reachable States: Finite Depth
Key observation: to choose an optimal action for 𝑠0, we only need 
to know 𝑄0

∗(𝑠0, 𝑎) for all 𝑎 ∈ 𝒜.

We don’t need to compute all optimal values.

Idea: modify our DP algorithm for computing value function so 
that it only considers the reachable states at each depth.
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Using Reachable States: Finite Depth

a.k.a. expectimax search, 
forward search

Warning: don’t use this 
implementation.
(See later slides)
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Expectimax Search on AODAGs

Key ideas:
1. Start at the leaves, work up to the root
2. Annotate states with value function
3. Annotate actions with Q function
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Example: Marshmallows
• States: (hunger level, marshmallow remains)

• Hunger level: 0, 1, 2 (higher is hungrier)
• Marshmallow remains: True or False 

• Actions: eat marshmallow, or wait
• Horizon: finite (horizon 𝐻 = 4)
• Rewards: Negative hunger level squared (on next state)
• Transition distribution:

• Marshmallow remains updated in obvious way
• If wait:

• With probability 0.25, hunger level increases by 1
• Otherwise, hunger level stays the same

• If eat (and marshmallow remains):
• With probability 1, hunger level set to 0

• If eat (and marshmallow gone):
• Same as waiting
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-4 * 0.25 + -1 * 0.75 = -1.75

2F 1F

𝑄2
∗ 1F, E =

Expecti-!
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Expecti-!
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Max!

max(-1.75, -1.75) = -1.75

E W

𝑉2
∗ 1F =

30



Max!

31
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Interleaving Planning and Execution
In the wild, we can “plan a little”, “execute a little”, repeat.
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Interleaving Planning and Execution
In the wild, we can “plan a little”, “execute a little”, repeat.
Receding horizon control (RHC): 
1. Plan to 𝐻 time steps in the future (even if infinite horizon)
2. Execute for 𝑇𝑟𝑒𝑝𝑙𝑎𝑛 ≤ 𝐻 time steps (often 𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1)

3. Repeat
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Interleaving Planning and Execution
In the wild, we can “plan a little”, “execute a little”, repeat.
Receding horizon control (RHC): 
1. Plan to 𝐻 time steps in the future (even if infinite horizon)
2. Execute for 𝑇𝑟𝑒𝑝𝑙𝑎𝑛 ≤ 𝐻 time steps (often 𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1)

3. Repeat
Execution monitoring:
• Replan only when some criteria are met
• Example: replan if you encounter an “unexpected” state (for 

different possible definitions of unexpected).
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Example: 
Expectimax +RHC

𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1
𝐻 = 2

Timestep 0
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Example: 
Expectimax +RHC

𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1
𝐻 = 2

Timestep 0

Random tiebreak: W
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Example: 
Expectimax +RHC

𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1
𝐻 = 2

Timestep 1

Execution! 
Environment 
updates
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Example: 
Expectimax +RHC

𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1
𝐻 = 2

Timestep 1

Replanning

Tom Silver - Princeton University - Fall 2025 39



Example: 
Expectimax +RHC

𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1
𝐻 = 2

Timestep 1

Taking best 
action E
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Example: 
Expectimax +RHC

𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1
𝐻 = 2

Timestep 2

Execution! 
Environment 

updates
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Example: 
Expectimax +RHC

𝑇𝑟𝑒𝑝𝑙𝑎𝑛 = 1
𝐻 = 2

Timestep 2

Etc.
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Expectimax Search: Alternative Implementation

Construct tree and compute values simultaneously.
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Expectimax Search: Alternative Implementation

Construct tree and compute values simultaneously.

This is the more common 
implementation of 

expectimax that you should 
probably use!

Note that without caching, 
this computes a tree, not 

AODAG. (Possible 
duplicates.)

Returns first action only. 
Assumes replanning
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Finding Reachable States: Infinite Depth

A state 𝑠 is reachable from 𝑠0 in the infinite-horizon case if there 
exists some 𝑇 such that 𝑠 is reachable at depth 𝑇.

How to find these reachable states?
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Finding Reachable States: Infinite Depth

A state 𝑠 is reachable from 𝑠0 in the infinite-horizon case if there 
exists some 𝑇 such that 𝑠 is reachable at depth 𝑇.

How to find these reachable states?

Build out AODAG, but only create nodes for new states.
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Using Reachable States: Infinite Depth

Idea: create an abstract MDP with only the reachable states.

Then, plan in the abstract MDP.
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Using Reachable States: Infinite Depth

Idea: create an abstract MDP with only the reachable states.

Then, plan in the abstract MDP.
Technically, domains of 𝑃, 𝑅 

also change.

This is a simple MDP 
abstraction. Others exist; active 

research area.
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When is Reachability Not Enough?

• Sometimes, the number of reachable states is just too large
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When is Reachability Not Enough?

• Sometimes, the number of reachable states is just too large
• Receding horizon control may also fail

• If all rewards within short horizons are trivial
• Or if the rewards seen within short horizons are misleading
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When is Reachability Not Enough?

• Sometimes, the number of reachable states is just too large
• Receding horizon control may also fail

• If all rewards within short horizons are trivial
• Or if the rewards seen within short horizons are misleading

• Heuristics to the rescue!
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Heuristics for MDPs

• For MDPs, a heuristic ෠𝑉 is an approximate value function:
෠𝑉 𝑠 ≈ 𝑉 𝑠 .
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Heuristics for MDPs

• For MDPs, a heuristic ෠𝑉 is an approximate value function:
෠𝑉 𝑠 ≈ 𝑉 𝑠 .

• A heuristic is admissible if ∀𝑠 ∈ 𝒮. ෠𝑉 𝑠 ≥ 𝑉 𝑠
• Can also weaken this to “for all reachable states”
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Expectimax + Heuristic Leaf Evals

Idea: do receding horizon control, with expectimax search. 
But! When we get to a leaf node, use ෠𝑉 to evaluate it.
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Expectimax + Heuristic Leaf Evals

Idea: do receding horizon control, with expectimax search. 
But! When we get to a leaf node, use ෠𝑉 to evaluate it.

If ෠𝑉 were perfect, we could just 
do 𝐻 = 1
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෠𝑉(1F) ෠𝑉(0F) ෠𝑉(1F) ෠𝑉(1T) ෠𝑉(1T) ෠𝑉(2T)෠𝑉(0F) ෠𝑉(0F) ෠𝑉(0T) ෠𝑉(0T)
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Expectimax + Heuristic Leaf Evals

Idea: do receding horizon control, with expectimax search. 
But! When we get to a leaf node, use ෠𝑉 to evaluate it.

What are benefits / disadvantages 
to using a larger 𝐻?
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Expectimax + Heuristic Leaf Evals

Idea: do receding horizon control, with expectimax search. 
But! When we get to a leaf node, use ෠𝑉 to evaluate it.

Limitation: we’re exhaustively exploring the tree to depth 𝐻.
Wouldn’t it be better to “focus” our computation?
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Real-Time Dynamic Programming (RTDP)

Idea #1: Build only some parts of the AODAG, not all of it.

But which parts?
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Real-Time Dynamic Programming (RTDP)

Idea #1: Build only some parts of the AODAG, not all of it.

But which parts?

Idea #2:  Use running estimate of the value function, initialized 
with the heuristic, to choose parts to expand.

Expand the parts of the AODAG that seem “most promising.”
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Real-Time Dynamic Programming (RTDP)

Real-Time Dynamic Programming (RTDP):

1. Use the heuristic to initialize a value function estimate.
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Real-Time Dynamic Programming (RTDP)

Real-Time Dynamic Programming (RTDP):

1. Use the heuristic to initialize a value function estimate.
2. Sample a trajectory from the initial state. Select actions greedily 

with respect to value function estimate.
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Real-Time Dynamic Programming (RTDP)

Real-Time Dynamic Programming (RTDP):

1. Use the heuristic to initialize a value function estimate.
2. Sample a trajectory from the initial state. Select actions greedily 

with respect to value function estimate.
3. Perform Bellman backups for all states in the trajectory

Best to start from the end 
and work backwards
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Real-Time Dynamic Programming (RTDP)

Real-Time Dynamic Programming (RTDP):

1. Use the heuristic to initialize a value function estimate.
2. Sample a trajectory from the initial state. Select actions greedily 

with respect to value function estimate.
3. Perform Bellman backups for all states in the trajectory
4. Repeat from (2)

There are different possible formulations of RTDP. This one is based on “Labeled RTDP: Improving the Convergence of Real-
Time Dynamic Programming.”  Bonet & Geffner (2003).
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Note: we’re in an infinite-horizon 
setting here, with stationary value 
functions. Finite-horizon versions 

also possible.
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Value function
approximation;
initialized to ෡𝑽

𝒔 𝑽

0T -1

1T -2

2T -3

0F -2

1F -4

2F -6
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𝒔 𝑽 𝝅

0T -1 E

1T -2 E

2T -3 E

0F -2 E

1F -4 W

2F -6 E

Greedy
policy

Random 
tiebreaking for 

*F states
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𝒔 𝑽 𝝅

0T -1 E

1T -2 E

2T -3 E

0F -2 E

1F -4 W

2F -6 E

Trajectory Collection
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𝒔 𝑽 𝝅

0T -1 E

1T -2 E

2T -3 E

0F -2 E

1F -4 W

2F * E

Bellman Backup: 2F
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𝒔 𝑽 𝝅

0T -1 E

1T -2 E

2T -3 E

0F -2 E

1F * W

2F * E

Bellman Backup: 1F
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𝒔 𝑽 𝝅

0T -1 E

1T -2 E

2T -3 E

0F * E

1F * W

2F * E

Bellman Backup: 0F
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𝒔 𝑽 𝝅

0T * E

1T -2 E

2T -3 E

0F * E

1F * W

2F * E

Bellman Backup: 0T
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𝒔 𝑽 𝝅

0T * W

1T -2 E

2T -3 W

0F * E

1F * W

2F * E

Greedy Policy Updates
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𝒔 𝑽 𝝅

0T * W

1T -2 E

2T -3 W

0F * E

1F * W

2F * E

Trajectory Collection

Etc.
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RTDP Guarantees

• If heuristic is admissible, RTDP will converge to optimal policy 
(Barto, Bradtke, & Singh 1995; Bertsekas 1995)

• However, it may converge quite slowly, especially because it will 
repeatedly visit “solved” states

• Labelled RTDP (LRTDP) is an extension that avoids revisiting 
“solved” states (Bonet & Geffner 2003)
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Stochastic Shortest Paths (SSPs)

Stochastic shortest path (SSP):
1. Rewards are nonpositive: 𝑅 𝑠, 𝑎, 𝑠′ ≤ 0 for 𝑠, 𝑠′ ∈ 𝒮, 𝑎 ∈ 𝒜

2. There are done states 𝐷 ⊆ 𝑆

3. There is at least one proper policy [1]

Can be understood as goals

Necessary because 𝐻 = ∞, 𝛾 = 1.
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Stochastic Shortest Paths (SSPs)

Stochastic shortest path (SSP):
1. Rewards are nonpositive: 𝑅 𝑠, 𝑎, 𝑠′ ≤ 0 for 𝑠, 𝑠′ ∈ 𝒮, 𝑎 ∈ 𝒜

2. There are done states 𝐷 ⊆ 𝑆

3. There is at least one proper policy [1]

[1] This is a technical condition that we will not define here.

As name suggests, we want to find 
the shortest path from the current 

state to a done state.
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Determinization

Idea: given an SSP MDP, convert to deterministic problem.
Then, use heuristic to plan in the deterministic problem.
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Determinization

Idea: given an SSP MDP, convert to deterministic problem.
Then, use heuristic to plan in the deterministic problem.

Caution! This strategy is approximate; we’re losing info.

Tom Silver - Princeton University - Fall 2025 94



Determinization

Idea: given an SSP MDP, convert to deterministic problem.
Then, use heuristic to plan in the deterministic problem.

Caution! This strategy is approximate; we’re losing info.

Good news: we can use methods from for informed search, like A*, to 
plan in determinized problem.
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Most-Likely Outcome Determinization

where:
• 𝑓 𝑠, 𝑎 = argmax𝑠′∈𝒮𝑃(𝑠′ ∣ 𝑠, 𝑎)

• 𝑐 𝑠, 𝑎, 𝑠′ = −𝑅(𝑠, 𝑎, 𝑠′) 

“Most likely outcome”
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Most-Likely Outcome Determinization

where:
• 𝑓 𝑠, 𝑎 = argmax𝑠′∈𝒮𝑃(𝑠′ ∣ 𝑠, 𝑎)

• 𝑐 𝑠, 𝑎, 𝑠′ = −𝑅(𝑠, 𝑎, 𝑠′) 

“Most likely outcome”

When might this go badly?
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Original
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MLO determinized!
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Original
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MLO determinized!
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All Outcomes Determinization

where:
• for each 𝑠, 𝑠′ ∈ 𝒮 and 𝑎 ∈ 𝒜 s.t. 𝑃 𝑠′ 𝑠, 𝑎 > 0, there is an 

action 𝑎′ ∈ 𝒜′ s.t. 𝑓 𝑠, 𝑎′ = 𝑠′ and 𝑐 𝑠, 𝑎′, 𝑠′ = −𝑅 𝑠, 𝑎, 𝑠′ .
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Original
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AO determinized!
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Original
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AO determinized!
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All Outcomes Determinization

where:
• for each 𝑠, 𝑠′ ∈ 𝒮 and 𝑎 ∈ 𝒜 s.t. 𝑃 𝑠′ 𝑠, 𝑎 > 0, there is an 

action 𝑎′ ∈ 𝒜′ s.t. 𝑓 𝑠, 𝑎′ = 𝑠′ and 𝑐 𝑠, 𝑎′, 𝑠′ = −𝑅 𝑠, 𝑎, 𝑠′ .

When might this go badly?
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Determinization

Other strategies convert transition probabilities into rewards, so 
the agent is discouraged from pursuing unlikely paths.
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Summary

• Known current state? Only some states reachable.
• How to leverage reachability?

• Finite horizon: expectimax search.
• Infinite/indefinite horizon: reachability abstraction, or receding horizon 

control + expectimax search

• How to leverage heuristics?
• Expectimax + heuristic leaf evals

• How to avoid exhaustive tree building?
• RTDP
• Determinization

Tom Silver - Princeton University - Fall 2025 109



Next Time

• Avoiding big Bellman backups (without determinizing)

• Scaling to larger state spaces

• Using sampling-based techniques
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