
Online Planning in MDPs:
Monte Carlo Methods

Tom Silver
Machine Learning for Robot Planning

Princeton University
Fall 2025

Recap & Preview

• Last time: started online planning for MDPs
• Current state known
• Agent “in the wild”
• Interleaving planning and execution

Tom Silver - Princeton University - Fall 2025 2

Recap & Preview

• Last time: started online planning for MDPs
• Current state known
• Agent “in the wild”
• Interleaving planning and execution

• Considered reachability and heuristics
• Expectimax search exploits reachability
• Leaf heuristic evaluation, RTDP, determinization use heuristics

Tom Silver - Princeton University - Fall 2025 3

Recap & Preview

• Last time: started online planning for MDPs
• Current state known
• Agent “in the wild”
• Interleaving planning and execution

• Considered reachability and heuristics
• Expectimax search exploits reachability
• Leaf heuristic evaluation, RTDP, determinization use heuristics

• Some MDPs are still too hard!
• One hard case: very large transition distributions
• Another hard case: long horizons and sparse rewards

Tom Silver - Princeton University - Fall 2025 4

MDPs with Very Large Transition Distributions

Recall Bellman backups:
• Given state 𝑠, for each 𝑎, for each possible

next state 𝑠′, update 𝑉(𝑠).

When number of possible next states is
large, Bellman backups will be slow.

Tom Silver - Princeton University - Fall 2025 5

MDPs with Very Large Transition Distributions

Recall Bellman backups:
• Given state 𝑠, for each 𝑎, for each possible

next state 𝑠′, update 𝑉(𝑠).
When number of possible next states is
large, Bellman backups will be slow.
Examples:
1. “Chase” with multiple bunnies (or Pacman with

ghosts)
2. Server farm; any server might fail with small

probability
3. Pathological MDP, small probability of

transitioning anywhere

Tom Silver - Princeton University - Fall 2025 6

MDPs with Very Large Transition Distributions

Recall Bellman backups:
• Given state 𝑠, for each 𝑎, for each possible

next state 𝑠′, update 𝑉(𝑠).
When number of possible next states is
large, Bellman backups will be slow.
Examples:
1. “Chase” with multiple bunnies (or Pacman with

ghosts)
2. Server farm; any server might fail with small

probability
3. Pathological MDP, small probability of

transitioning anywhere

Almost all methods we’ve
seen use Bellman backups.

What’s the exception?

Tom Silver - Princeton University - Fall 2025 7

Simulator Access to MDPs

• Possible next states may be too big to enumerate.
• Example: server farm with 100 servers, 2100 next possible states

Tom Silver - Princeton University - Fall 2025 8

Simulator Access to MDPs

• Possible next states may be too big to enumerate.
• Example: server farm with 100 servers, 2100 next possible states

• Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given 𝑠 and 𝑎
• Example: flip a coin 100 times to sample a next state

Tom Silver - Princeton University - Fall 2025 9

Simulator Access to MDPs

• Possible next states may be too big to enumerate.
• Example: server farm with 100 servers, 2100 next possible states

• Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given 𝑠 and 𝑎
• Example: flip a coin 100 times to sample a next state

• Simulator access (a.k.a. generative access) to an MDP:
We can only sample 𝑠′ ∼ 𝑃(⋅∣ 𝑠, 𝑎).

Tom Silver - Princeton University - Fall 2025 10

Simulator Access to MDPs

• Possible next states may be too big to enumerate.
• Example: server farm with 100 servers, 2100 next possible states

• Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given 𝑠 and 𝑎
• Example: flip a coin 100 times to sample a next state

• Simulator access (a.k.a. generative access) to an MDP:
We can only sample 𝑠′ ∼ 𝑃(⋅∣ 𝑠, 𝑎).

We’re going to need some new planning algorithms…

Tom Silver - Princeton University - Fall 2025 11

Monte Carlo Bellman Backups

• Idea: replace full Bellman backup with Monte Carlo (MC)
Bellman backup, which samples next states instead.

Tom Silver - Princeton University - Fall 2025 12

Monte Carlo Bellman Backups

• Idea: replace full Bellman backup with Monte Carlo (MC)
Bellman backup, which samples next states instead.

• Another view: we're approximating the transition distribution
with a sampling distribution

Tom Silver - Princeton University - Fall 2025 13

Monte Carlo Bellman Backups

• Idea: replace full Bellman backup with Monte Carlo (MC)
Bellman backup, which samples next states instead.

• Another view: we're approximating the transition distribution
with a sampling distribution

Finite horizon case
is analogous

Tom Silver - Princeton University - Fall 2025 14

Sparse Sampling

• Sparse sampling = Expectimax + MC Bellman backups

Tom Silver - Princeton University - Fall 2025 15

Sparse Sampling

• Sparse sampling =
Expectimax + MC Bellman
backups

• Nice property: can get
optimality guarantees that
depend only on 𝑤 and 𝐻, not
on |𝒮| (Kearns, Mansour, and
Ng 1999).

Tom Silver - Princeton University - Fall 2025 16

Sparse sampling
𝐻 = 2, 𝑤 = 3

Tom Silver - Princeton University - Fall 2025 17

Sparse sampling
𝐻 = 2, 𝑤 = 3

Tom Silver - Princeton University - Fall 2025 18

Sparse sampling
𝐻 = 2, 𝑤 = 3

Tom Silver - Princeton University - Fall 2025 19

Sparse sampling
𝐻 = 2, 𝑤 = 3

Tom Silver - Princeton University - Fall 2025 20

Sparse sampling
𝐻 = 2, 𝑤 = 3

Note:
• States could be repeated
• Actual # successors could be >> 3

Tom Silver - Princeton University - Fall 2025 21

Sparse sampling
𝐻 = 2, 𝑤 = 3

Expecti-!

Tom Silver - Princeton University - Fall 2025 22

Sparse sampling
𝐻 = 2, 𝑤 = 3

Max!

Tom Silver - Princeton University - Fall 2025 23

Sparse sampling
𝐻 = 2, 𝑤 = 3

Expecti-!

Tom Silver - Princeton University - Fall 2025 24

Sparse sampling
𝐻 = 2, 𝑤 = 3

Max!

Tom Silver - Princeton University - Fall 2025 25

Limitations of Sparse Sampling

• Recall limitation of expectimax: exhaustive AODAG building
• Sparse sampling is similarly exhaustive

• It does not use reward info at all in building the AODAG

Tom Silver - Princeton University - Fall 2025 26

Limitations of Sparse Sampling

• Recall limitation of expectimax: exhaustive AODAG building
• Sparse sampling is similarly exhaustive

• It does not use reward info at all in building the AODAG

• RTDP was better: it built out using value estimates
• But RTDP still performed exhaustive Bellman backups

Tom Silver - Princeton University - Fall 2025 27

Limitations of Sparse Sampling

• Recall limitation of expectimax: exhaustive AODAG building
• Sparse sampling is similarly exhaustive

• It does not use reward info at all in building the AODAG

• RTDP was better: it built out using value estimates
• But RTDP still performed exhaustive Bellman backups
• Moreover, RTDP may be a little “too greedy”

• Always expands AODAG according to current best estimate
• Does not explore parts of AODAG where estimates are uncertain

Tom Silver - Princeton University - Fall 2025 28

Limitations of Sparse Sampling

• Recall limitation of expectimax: exhaustive AODAG building
• Sparse sampling is similarly exhaustive

• It does not use reward info at all in building the AODAG

• RTDP was better: it built out using value estimates
• But RTDP still performed exhaustive Bellman backups
• Moreover, RTDP may be a little “too greedy”

• Always expands AODAG according to current best estimate
• Does not explore parts of AODAG where estimates are uncertain

Let’s study this in special case: 𝐻 = 1.

Tom Silver - Princeton University - Fall 2025 29

Multi-armed Bandits (MAB)

https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/

Tom Silver - Princeton University - Fall 2025 30

https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/

Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

And just one fixed initial state.

Tom Silver - Princeton University - Fall 2025 31

Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat 𝑀 times:
1. Select 𝑎 ∈ 𝒜

Tom Silver - Princeton University - Fall 2025 32

Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat 𝑀 times:
1. Select 𝑎 ∈ 𝒜

2. Receive sample 𝑠′ ∈ 𝑃(⋅∣ 𝑠, 𝑎)

Tom Silver - Princeton University - Fall 2025 33

Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat 𝑀 times:
1. Select 𝑎 ∈ 𝒜

2. Receive sample 𝑠′ ∈ 𝑃(⋅∣ 𝑠, 𝑎)

3. Observe reward 𝑅(𝑠, 𝑎, 𝑠′)

Tom Silver - Princeton University - Fall 2025 34

Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat 𝑀 times:
1. Select 𝑎 ∈ 𝒜

2. Receive sample 𝑠′ ∈ 𝑃(⋅∣ 𝑠, 𝑎)

3. Observe reward 𝑅(𝑠, 𝑎, 𝑠′)

How? This is the challenge.

Tom Silver - Princeton University - Fall 2025 35

Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat 𝑀 times:
1. Select 𝑎 ∈ 𝒜

2. Receive sample 𝑠′ ∈ 𝑃(⋅∣ 𝑠, 𝑎)

3. Observe reward 𝑅(𝑠, 𝑎, 𝑠′)

What’s the objective?

How? This is the challenge.

Tom Silver - Princeton University - Fall 2025 36

MAB: A Tale of Two Settings Objective: minimize regret

Tom Silver - Princeton University - Fall 2025 37

MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1

where 𝑟𝑀+1
∗ is best possible

under clairvoyant policy.

Tom Silver - Princeton University - Fall 2025 38

Objective: minimize regret

MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1

where 𝑟𝑀+1
∗ is best possible

under clairvoyant policy.
• Don’t care about 𝑟1, … , 𝑟𝑀.
• Just want informative data.
• A.k.a. selection problem.

Tom Silver - Princeton University - Fall 2025 39

Objective: minimize regret

MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1

where 𝑟𝑀+1
∗ is best possible

under clairvoyant policy.
• Don’t care about 𝑟1, … , 𝑟𝑀.
• Just want informative data.
• A.k.a. selection problem.

Cumulative Regret

• Cumulative regret:
𝑟1

∗ + ⋯ + 𝑟𝑀
∗ − (𝑟1 + ⋯ + 𝑟𝑀).

Tom Silver - Princeton University - Fall 2025 40

Objective: minimize regret

MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1

where 𝑟𝑀+1
∗ is best possible

under clairvoyant policy.
• Don’t care about 𝑟1, … , 𝑟𝑀.
• Just want informative data.
• A.k.a. selection problem.

Cumulative Regret

• Cumulative regret:
𝑟1

∗ + ⋯ + 𝑟𝑀
∗ − (𝑟1 + ⋯ + 𝑟𝑀).

• Exploration-exploitation: at
each step, should we select
action believed to be best
(exploit) or try one we’re
uncertain about (explore)?

Tom Silver - Princeton University - Fall 2025 41

Objective: minimize regret

MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1

where 𝑟𝑀+1
∗ is best possible

under clairvoyant policy.
• Don’t care about 𝑟1, … , 𝑟𝑀.
• Just want informative data.
• A.k.a. selection problem.

Cumulative Regret

• Cumulative regret:
𝑟1

∗ + ⋯ + 𝑟𝑀
∗ − (𝑟1 + ⋯ + 𝑟𝑀).

• Exploration-exploitation: at
each step, should we select
action believed to be best
(exploit) or try one we’re
uncertain about (explore)?

When would each make more sense?

Tom Silver - Princeton University - Fall 2025 42

Objective: minimize regret

Strategies for MAB

• Most strategies maintain sample estimate of Q function:
෠𝑄 𝑠, 𝑎 =

1

|ℐ𝑎|
෍

𝑖∈ℐ𝑎

𝑟𝑖

where ℐ𝑎 is the set of step indices where action 𝑎 was selected.

𝑠 not important here,
but will be later

Tom Silver - Princeton University - Fall 2025 43

Strategies for MAB

• Most strategies maintain sample estimate of Q function:
෠𝑄 𝑠, 𝑎 =

1

|ℐ𝑎|
෍

𝑖∈ℐ𝑎

𝑟𝑖

where ℐ𝑎 is the set of step indices where action 𝑎 was selected.

• Notation: 𝑁 𝑠, 𝑎 = |ℐ𝑎|.

𝑠 not important here,
but will be later

Number of times we
have tried 𝑎

Tom Silver - Princeton University - Fall 2025 44

Strategies for MAB

• Most strategies maintain sample estimate of Q function:
෠𝑄 𝑠, 𝑎 =

1

|ℐ𝑎|
෍

𝑖∈ℐ𝑎

𝑟𝑖

where ℐ𝑎 is the set of step indices where action 𝑎 was selected.

• Notation: 𝑁 𝑠, 𝑎 = |ℐ𝑎|.

𝑠 not important here,
but will be later

Number of times we
have tried 𝑎

Why might “always select argmaxa ෠𝑄 𝑠, 𝑎 ” be
a suboptimal strategy?

Tom Silver - Princeton University - Fall 2025 45

Strategies for MAB: 𝜖-greedy

Epsilon-greedy strategy

• With probability 𝜖, select random action (explore)
• Otherwise, select argmaxa ෠𝑄 𝑠, 𝑎 (exploit)

If there’s an action that has never been tried (𝑁 𝑠 , 𝑎 = 0), select it.

Tom Silver - Princeton University - Fall 2025 46

Strategies for MAB: UCB

Upper confidence bounds (UCB)

Main idea: optimism in the face of uncertainty.

• New restaurant in town! I don’t know if it’s good, but
optimistically, it might be fantastic! Let’s eat.

• New course offering! I don’t know if it’s good, but optimistically,
it might be. Let’s take it!

Tom Silver - Princeton University - Fall 2025 47

Why is optimism in the face of
uncertainty a good principle?

• If your optimistic predictions are
correct, you’ll be thrilled!

• If they’re not, you will quickly
discover that you were wrong
from the new data.

• Contrast with pessimism.

Tom Silver - Princeton University - Fall 2025 48

Being Optimistic with Confidence Bounds

• Suppose I believe that with 95% probability, ෠𝑄(𝑠, 𝑎1) is between
-1.25 and 4.75.

• Optimism in the face of uncertainty says: it’s plausibly possible
that ෠𝑄(𝑠, 𝑎1) = 4.75, so I’m going to assume that it is.

Tom Silver - Princeton University - Fall 2025 49

Being Optimistic with Confidence Bounds

• Suppose I believe that with 95% probability, ෠𝑄(𝑠, 𝑎1) is between
-1.25 and 4.75.

• Optimism in the face of uncertainty says: it’s plausibly possible
that ෠𝑄(𝑠, 𝑎1) = 4.75, so I’m going to assume that it is.

• I also think that with 95% probability, −3.0 ≤ ෠𝑄 𝑠, 𝑎2 ≤ 5.0.

• Optimistically, ෠𝑄 𝑠, 𝑎2 > ෠𝑄 𝑠, 𝑎1 . So, I’ll choose 𝑎2!

Tom Silver - Princeton University - Fall 2025 50

Recipe for Deriving UCB Algorithms

Tom Silver - Princeton University - Fall 2025 51

Recipe for Deriving UCB Algorithms

• For each action 𝑎 ∈ 𝒜, define random variables 𝑋𝑎
1, … 𝑋𝑎

𝑛 where 𝑋𝑎
𝑖

represents the reward for the 𝑖𝑡ℎ try of action 𝑎.

• Note that these 𝑋𝑎
𝑖 are i.i.d. with distribution 𝑅 𝑠, 𝑎, 𝑆′ , where 𝑆′ ∼

𝑃(𝑠′ ∣ 𝑠, 𝑎), which has mean 𝑄(𝑠, 𝑎).

• Let ෠𝑋𝑎
𝑛 =

1

𝑛
σ𝑖=1

𝑛 𝑋𝑎
𝑖 . Represents ෠𝑄(𝑠, 𝑎) after 𝑛 tries of 𝑎.

• Make some assumptions about the distribution (e.g., it is subgaussian)
and use some concentration bounds (e.g, Chebyshev) to derive an
inequality like...

Tom Silver - Princeton University - Fall 2025 52

Recipe for Deriving UCB Algorithms

• For each action 𝑎 ∈ 𝒜, define random variables 𝑋𝑎
1, … 𝑋𝑎

𝑛 where 𝑋𝑎
𝑖

represents the reward for the 𝑖𝑡ℎ try of action 𝑎.

• Note that these 𝑋𝑎
𝑖 are i.i.d. with distribution 𝑅 𝑠, 𝑎, 𝑆′ , where 𝑆′ ∼

𝑃(𝑠′ ∣ 𝑠, 𝑎), which has mean 𝑄(𝑠, 𝑎).

• Let ෠𝑋𝑎
𝑛 =

1

𝑛
σ𝑖=1

𝑛 𝑋𝑎
𝑖 . Represents ෠𝑄(𝑠, 𝑎) after 𝑛 tries of 𝑎.

• Make some assumptions about the distribution (e.g., it is subgaussian)
and use some concentration bounds (e.g, Chebyshev) to derive an
inequality like...

Tom Silver - Princeton University - Fall 2025 53

Recipe for Deriving UCB Algorithms

• For each action 𝑎 ∈ 𝒜, define random variables 𝑋𝑎
1, … 𝑋𝑎

𝑛 where 𝑋𝑎
𝑖

represents the reward for the 𝑖𝑡ℎ try of action 𝑎.

• Note that these 𝑋𝑎
𝑖 are i.i.d. with distribution 𝑅 𝑠, 𝑎, 𝑆′ , where 𝑆′ ∼

𝑃(𝑠′ ∣ 𝑠, 𝑎), which has mean 𝑄(𝑠, 𝑎).

• Let ෠𝑋𝑎
𝑛 =

1

𝑛
σ𝑖=1

𝑛 𝑋𝑎
𝑖 . Represents ෠𝑄(𝑠, 𝑎) after 𝑛 tries of 𝑎.

• Make some assumptions about the distribution (e.g., it is subgaussian)
and use some concentration bounds (e.g, Chebyshev) to derive an
inequality like...

Tom Silver - Princeton University - Fall 2025 54

Recipe for Deriving UCB Algorithms

𝑃(𝑄 𝑠, 𝑎 ≥ ෠𝑋𝑎
𝑛 +

2 log
1
𝛿

𝑛
) ≤ 𝛿 For any 𝛿 ∈ (0, 1)

Tom Silver - Princeton University - Fall 2025 55

Recipe for Deriving UCB Algorithms

𝑃(𝑄 𝑠, 𝑎 ≥ ෠𝑋𝑎
𝑛 +

2 log
1
𝛿

𝑛
) ≤ 𝛿

After 𝑛 tries of action 𝑎, I can be sure, with (1 − 𝛿) probability,
that my estimate of the value of 𝑎 is within a constant from the
true value.

Given a desired confidence level, like (1 − 𝛿) = 0.95, the most
optimistic plausible estimate of the true value is ෠𝑋𝑎

𝑛 +
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

For any 𝛿 ∈ (0, 1)

Tom Silver - Princeton University - Fall 2025 56

Recipe for Deriving UCB Algorithms

𝑃(𝑄 𝑠, 𝑎 ≥ ෠𝑋𝑎
𝑛 +

2 log
1
𝛿

𝑛
) ≤ 𝛿

After 𝑛 tries of action 𝑎, I can be sure, with (1 − 𝛿) probability,
that my estimate of the value of 𝑎 is within a constant from the
true value.

Given a desired confidence level, like (1 − 𝛿) = 0.95, the most
optimistic plausible estimate of the true value is ෠𝑋𝑎

𝑛 +
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

For any 𝛿 ∈ (0, 1)

Tom Silver - Princeton University - Fall 2025 57

Recipe for Deriving UCB Algorithms

𝑃(𝑄 𝑠, 𝑎 ≥ ෠𝑋𝑎
𝑛 +

2 log
1
𝛿

𝑛
) ≤ 𝛿

As 𝑛 gets larger, or as
1 − 𝛿 gets larger, bound

gets tighter.

After 𝑛 tries of action 𝑎, I can be sure, with (1 − 𝛿) probability,
that my estimate of the value of 𝑎 is within a constant from the
true value.

Given a desired confidence level, like (1 − 𝛿) = 0.95, the most
optimistic plausible estimate of the true value is ෠𝑋𝑎

𝑛 +
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

For any 𝛿 ∈ (0, 1)

Tom Silver - Princeton University - Fall 2025 58

Strategies for MAB: UCB

Upper confidence bounds (UCB)

Idea: construct confidence intervals for ෠𝑄, then be optimistic in the
face of uncertainty.

At step 𝑚, select: argmaxa
෠𝑄 𝑠, 𝑎 +

𝜙 𝑚

𝑁 𝑠,𝑎

where 𝜙 can be several functions; often 𝜙 𝑚 = 𝑐 log(𝑚) for a
hyperparameter 𝑐.

Intuition: as number of tries increases, shift
from exploration to exploitation.

Note resemblance to
concentration bounds!

Tom Silver - Princeton University - Fall 2025 59

Strategies for MAB: UCB

Upper confidence bounds (UCB)

• UCB attains optimal cumulative regret (Lai & Robbins 1985)

• It does not attain optimal simple regret (Bubeck et al. 2010)

• But it’s widely used in planning contexts nonetheless, and works
well in practice

Tom Silver - Princeton University - Fall 2025 60

Tom Silver - Princeton University - Fall 2025 61

Tom Silver - Princeton University - Fall 2025 62

Tom Silver - Princeton University - Fall 2025 63

Tom Silver - Princeton University - Fall 2025 64

Tom Silver - Princeton University - Fall 2025 65

Tom Silver - Princeton University - Fall 2025 66

Uniform Random Exploit Only Epsilon Greedy UCB

Mean Cumulative Reward 55.70 141.98 134.75 149.70

Std Cumulative Reward 22.94 44.09 37.66 36.23

Mean Final Reward 1.98 1.22 1.72 2.34

Std Final Reward 3.12 1.84 3.01 3.51

Tom Silver - Princeton University - Fall 2025 67

Uniform Random Exploit Only Epsilon Greedy UCB

Mean Cumulative Reward 55.70 141.98 134.75 149.70

Std Cumulative Reward 22.94 44.09 37.66 36.23

Mean Final Reward 1.98 1.22 1.72 2.34

Std Final Reward 3.12 1.84 3.01 3.51

Lots more on Bandits:

• “Bandit Algorithms.” Lattimore & Szepesvari (2020). Free online.
• https://banditalgs.com/

Tom Silver - Princeton University - Fall 2025 68

https://banditalgs.com/
https://banditalgs.com/

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.

Arm 1 Arm 2

Tom Silver - Princeton University - Fall 2025 69

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB

problem at depth ℎ + 1.

70

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB

problem at depth ℎ + 1.

71

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB

problem at depth ℎ + 1.

72

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB

problem at depth ℎ + 1.

73

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB

problem at depth ℎ + 1.

74

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB

problem at depth ℎ + 1.

75

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB

problem at depth ℎ + 1.

76

Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB

problem at depth ℎ + 1.

• Could we recursively apply bandit approaches like UCB within
sparse sampling?
• Sure!

Tom Silver - Princeton University - Fall 2025 77

Regret in Recursive Bandits

• At the root, it’s clear that we care about simple regret, rather than
cumulative regret.

• However, beyond the root, the story is less clear [1].
• Each non-root state node 𝑠 needs to figure out both the best action

to take at 𝑠, and the value 𝑉(𝑠), for use by ancestors.
• These are somewhat competing: if all I need is to check that 𝑎 is best,

it could make sense to thoroughly check other actions, making sure
they’re not better.

• But if what I need is 𝑄(𝑠, 𝑎), then I need more samples of 𝑎.
• For this reason, some works (e.g. [2]) advocate using one strategy

at/near the root, and a different strategy elsewhere.

Tom Silver - Princeton University - Fall 2025 78

Regret in Recursive Bandits

• At the root, it’s clear that we care about simple regret, rather than
cumulative regret.

• However, beyond the root, the story is less clear [1].
• Each non-root state node 𝑠 needs to figure out both the best action

to take at 𝑠, and the value 𝑉(𝑠), for use by ancestors.
• These are somewhat competing: if all I need is to check that 𝑎 is best,

it could make sense to thoroughly check other actions, making sure
they’re not better.

• But if what I need is 𝑄(𝑠, 𝑎), then I need more samples of 𝑎.
• For this reason, some works (e.g. [2]) advocate using one strategy

at/near the root, and a different strategy elsewhere.
[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).

Tom Silver - Princeton University - Fall 2025 79

Regret in Recursive Bandits

• At the root, it’s clear that we care about simple regret, rather than
cumulative regret.

• However, beyond the root, the story is less clear [1].
• Each non-root state node 𝑠 needs to figure out both the best action

to take at 𝑠, and the value 𝑉(𝑠), for use by ancestors.
• These are somewhat competing: if all I need is to check that 𝑎 is best,

it could make sense to thoroughly check other actions, making sure
they’re not better.

• But if what I need is 𝑉 𝑠 = 𝑄(𝑠, 𝑎), then I need more 𝑎 samples. For
this reason, some works (e.g. [2]) advocate using one strategy at/near
the root, and a different strategy elsewhere.

Tom Silver - Princeton University - Fall 2025 80

[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).

Regret in Recursive Bandits

• At the root, it’s clear that we care about simple regret, rather than
cumulative regret.

• However, beyond the root, the story is less clear [1].
• Each non-root state node 𝑠 needs to figure out both the best action

to take at 𝑠, and the value 𝑉(𝑠), for use by ancestors.
• These are somewhat competing: if all I need is to check that 𝑎 is best,

it could make sense to thoroughly check other actions, making sure
they’re not better.

• But if what I need is 𝑉 𝑠 = 𝑄(𝑠, 𝑎), then I need more 𝑎 samples.
• For this reason, some works (e.g. [2]) advocate using one strategy

at/near the root, and a different strategy elsewhere.
[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).
[2] “Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search.” Pepels et al. (2014).

Tom Silver - Princeton University - Fall 2025 81

Limitation of Sparse Sampling + UCB

• Even with a smarter bandits strategy, sparse sampling suffers
from poor anytime performance
• Anytime performance: evaluation of the best policy found for any given

computational budget (e.g., wall clock time)

Tom Silver - Princeton University - Fall 2025 82

Limitation of Sparse Sampling + UCB

• Even with a smarter bandits strategy, sparse sampling suffers
from poor anytime performance
• Anytime performance: evaluation of the best policy found for any given

computational budget (e.g., wall clock time)

• In general, sparse sampling completely evaluates each subtree
before returning to the parent.

Tom Silver - Princeton University - Fall 2025 83

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:

Tom Silver - Princeton University - Fall 2025 84

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

Tom Silver - Princeton University - Fall 2025 85

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

2. Using heuristics to evaluate leaves

Tom Silver - Princeton University - Fall 2025 86

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

2. Using heuristics to evaluate leaves

3. Sparse sampling of transition model

Tom Silver - Princeton University - Fall 2025 87

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

2. Using heuristics to evaluate leaves

3. Sparse sampling of transition model

4. MAB exploration techniques

Tom Silver - Princeton University - Fall 2025 88

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

2. Using heuristics to evaluate leaves

3. Sparse sampling of transition model

4. MAB exploration techniques

5. Expanding AODAG gradually

Tom Silver - Princeton University - Fall 2025 89

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

2. Using heuristics to evaluate leaves

3. Sparse sampling of transition model

4. MAB exploration techniques

5. Expanding AODAG gradually

One new idea: estimating heuristics with rollouts.

Tom Silver - Princeton University - Fall 2025 90

Estimating Heuristics with Rollouts

• To get cheap heuristic for a state, MCTS uses rollouts.
• A rollout is a trajectory of states, actions, and rewards sampled

from the MDP with a policy 𝜋rollout.

Tom Silver - Princeton University - Fall 2025 91

Estimating Heuristics with Rollouts

• To get cheap heuristic for a state, MCTS uses rollouts.
• A rollout is a trajectory of states, actions, and rewards sampled

from the MDP with a policy 𝜋rollout.
• Estimated value is average of cumulative rollout rewards

• With temporal discounting applied as needed

Tom Silver - Princeton University - Fall 2025 92

Estimating Heuristics with Rollouts

• To get cheap heuristic for a state, MCTS uses rollouts.
• A rollout is a trajectory of states, actions, and rewards sampled

from the MDP with a policy 𝜋rollout.
• Estimated value is average of cumulative rollout rewards

• With temporal discounting applied as needed

• Common choice of 𝜋rollout is random action selection
• Domain-specific knowledge or machine learning can also be used

Tom Silver - Princeton University - Fall 2025 93

Estimating Heuristics with Rollouts

• To get cheap heuristic for a state, MCTS uses rollouts.
• A rollout is a trajectory of states, actions, and rewards sampled

from the MDP with a policy 𝜋rollout.
• Estimated value is average of cumulative rollout rewards

• With temporal discounting applied as needed

• Common choice of 𝜋rollout is random action selection
• Domain-specific knowledge or machine learning can also be used

When would rollouts give good or
bad heuristic estimates?

Tom Silver - Princeton University - Fall 2025 94

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.

Tom Silver - Princeton University - Fall 2025 95

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.

Unlike expectimax / sparse sampling, but like RTDP,
we’re going to maintain and update ෠𝑄 for nodes in the
AODAG, rather than calculating them once and for
all.

Tom Silver - Princeton University - Fall 2025 96

Example AODAG during MCTS

Tom Silver - Princeton University - Fall 2025 97

Example AODAG during MCTS

Important note: each gray box now includes both
෠𝑄𝑡(𝑠, 𝑎) and 𝑁𝑡(𝑠, 𝑎) (for action nodes).

We don’t need to store anything at state nodes.

Tom Silver - Princeton University - Fall 2025 98

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:

Tom Silver - Princeton University - Fall 2025 99

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Tom Silver - Princeton University - Fall 2025 100

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Pick the leaf as follows:
1. Start at the root
2. Select an action (using tree policy)
3. Sample a next state
4. Repeat 2-3 until a leaf is reached

Tom Silver - Princeton University - Fall 2025 101

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Pick the leaf as follows:
1. Start at the root
2. Select an action (using tree policy)
3. Sample a next state
4. Repeat 2-3 until a leaf is reached

Use MAB ideas

Tom Silver - Princeton University - Fall 2025 102

Tom Silver - Princeton University - Fall 2025 103

Tom Silver - Princeton University - Fall 2025 104

Tom Silver - Princeton University - Fall 2025 105

Tom Silver - Princeton University - Fall 2025 106

Tom Silver - Princeton University - Fall 2025 107

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and

new child action nodes, one per possible action.

Tom Silver - Princeton University - Fall 2025 108

Tom Silver - Princeton University - Fall 2025 109

Tom Silver - Princeton University - Fall 2025 110

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and

new child action nodes, one per possible action.
3. Simulation: Calculate a heuristic value for the new state node

using rollouts.

Tom Silver - Princeton University - Fall 2025 111

Tom Silver - Princeton University - Fall 2025 112

Tom Silver - Princeton University - Fall 2025 113

Tom Silver - Princeton University - Fall 2025 114

Tom Silver - Princeton University - Fall 2025 115

Tom Silver - Princeton University - Fall 2025 116

Notation: let 𝜌 denote the
estimated heuristic from rollouts.

Tom Silver - Princeton University - Fall 2025 117

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and

new child action nodes, one per possible action.
3. Simulation: Calculate a heuristic value for the new state node

using rollouts.
But if you have a heuristic, maybe use that instead!

But, good to be admissible.

Tom Silver - Princeton University - Fall 2025 118

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and

new child action nodes, one per possible action.
3. Simulation: Calculate a heuristic value for the new state node

using rollouts.
4. Backpropagation: Update ෠𝑄 and 𝑁 for the selected state and

action and all ancestors.

Tom Silver - Princeton University - Fall 2025 119

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and

new child action nodes, one per possible action.
3. Simulation: Calculate a heuristic value for the new state node

using rollouts.
4. Backpropagation: Update ෠𝑄 and 𝑁 for the selected state and

action and all ancestors.
Not neural network

backprop!
Tom Silver - Princeton University - Fall 2025 120

MCTS Backpropagation

• ෢𝑄𝑡(𝑠, 𝑎) will be the average of all cumulative rewards seen during
planning, when starting at 𝑠 at time 𝑡 and taking 𝑎.

• And, 𝑁𝑡(𝑠, 𝑎) should be the visitation counts.

• Backpropagation: given one new trajectory, update ෠𝑄, 𝑁.

Tom Silver - Princeton University - Fall 2025 121

Updating 𝑁1 𝑠′, 𝑎′ ← 1
and ෢𝑄1 𝑠′, 𝑎′ ← 𝜌.

𝑎′

𝑠

𝑎

𝑠′

Tom Silver - Princeton University - Fall 2025 122

Updating 𝑁0 𝑠, 𝑎 ← 𝑁0 𝑠, 𝑎 + 1

𝑠

𝑎

𝑠′

𝑎′

Tom Silver - Princeton University - Fall 2025 123

Updating 𝑁0 𝑠, 𝑎 ← 𝑁0 𝑠, 𝑎 + 1

and ෢ 𝑄0 𝑠, 𝑎 ←
𝑁0 𝑠,𝑎 −1 ෢𝑄0 𝑠,𝑎 +𝑅 𝑠,𝑎,𝑠′ +𝛾 ෢𝑄1 𝑠′, 𝑎′

𝑁0 𝑠,𝑎

𝑠

𝑎

𝑠′

Running average!

𝑎′

Tom Silver - Princeton University - Fall 2025 124

Updating 𝑁0 𝑠, 𝑎 ← 𝑁0 𝑠, 𝑎 + 1

and ෢ 𝑄0 𝑠, 𝑎 ←
𝑁0 𝑠,𝑎 −1 ෢𝑄0 𝑠,𝑎 +𝑅 𝑠,𝑎,𝑠′ +𝛾 ෢𝑄1 𝑠′, 𝑎′

𝑁0 𝑠,𝑎

𝑠

𝑎

𝑠′

Running average? Why not max?
• Taking a max instead is an

option, but less standard [1]
• As number of trajectories

increases, and tree policy gets
more exploit-y, it will be that
running average ≈ max.

[1] https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf

𝑎′

Tom Silver - Princeton University - Fall 2025 125

Running average!

https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf

MCTS Summary

“A Survey of Monte Carlo Tree Search Methods.” Browne et al. (2012).

Tom Silver - Princeton University - Fall 2025 126

Tom Silver - Princeton University - Fall 2025 127

Tom Silver - Princeton University - Fall 2025 128

Tom Silver - Princeton University - Fall 2025 129

False

Tom Silver - Princeton University - Fall 2025 130

Tom Silver - Princeton University - Fall 2025 131

Tom Silver - Princeton University - Fall 2025 132

Tom Silver - Princeton University - Fall 2025 133

Tom Silver - Princeton University - Fall 2025 134

False

Tom Silver - Princeton University - Fall 2025 135

Tom Silver - Princeton University - Fall 2025 136

Tom Silver - Princeton University - Fall 2025 137

Tom Silver - Princeton University - Fall 2025 138

Tom Silver - Princeton University - Fall 2025 139

Tom Silver - Princeton University - Fall 2025 140

True

Tom Silver - Princeton University - Fall 2025 141

Tom Silver - Princeton University - Fall 2025 142

Tom Silver - Princeton University - Fall 2025 143

Tom Silver - Princeton University - Fall 2025 144

Tom Silver - Princeton University - Fall 2025 145

Tom Silver - Princeton University - Fall 2025 146

Tom Silver - Princeton University - Fall 2025 147

Tom Silver - Princeton University - Fall 2025 148

Tom Silver - Princeton University - Fall 2025 149

Tom Silver - Princeton University - Fall 2025 150

UCT: MCTS + UCB

• Probably the most popular algorithm in the MCTS family is
Upper Confidence Trees (UCT).

• UCT uses the exploration bonus from UCB to select actions.

Tom Silver - Princeton University - Fall 2025 151

Summary

• Sparse sampling: expectimax search, but instead of full Bellman
backups, use sampling to approximate

• Multi-armed bandits: select actions to minimize regret

• Monte Carlo Tree Search: sparse sampling + MAB exploration
techniques + rollouts to estimate heuristics

Tom Silver - Princeton University - Fall 2025 152

	Slide 1: Online Planning in MDPs: Monte Carlo Methods
	Slide 2: Recap & Preview
	Slide 3: Recap & Preview
	Slide 4: Recap & Preview
	Slide 5: MDPs with Very Large Transition Distributions
	Slide 6: MDPs with Very Large Transition Distributions
	Slide 7: MDPs with Very Large Transition Distributions
	Slide 8: Simulator Access to MDPs
	Slide 9: Simulator Access to MDPs
	Slide 10: Simulator Access to MDPs
	Slide 11: Simulator Access to MDPs
	Slide 12: Monte Carlo Bellman Backups
	Slide 13: Monte Carlo Bellman Backups
	Slide 14: Monte Carlo Bellman Backups
	Slide 15: Sparse Sampling
	Slide 16: Sparse Sampling
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Limitations of Sparse Sampling
	Slide 27: Limitations of Sparse Sampling
	Slide 28: Limitations of Sparse Sampling
	Slide 29: Limitations of Sparse Sampling
	Slide 30: Multi-armed Bandits (MAB)
	Slide 31: Multi-armed Bandits (MAB)
	Slide 32: Multi-armed Bandits (MAB)
	Slide 33: Multi-armed Bandits (MAB)
	Slide 34: Multi-armed Bandits (MAB)
	Slide 35: Multi-armed Bandits (MAB)
	Slide 36: Multi-armed Bandits (MAB)
	Slide 37: MAB: A Tale of Two Settings
	Slide 38: MAB: A Tale of Two Settings
	Slide 39: MAB: A Tale of Two Settings
	Slide 40: MAB: A Tale of Two Settings
	Slide 41: MAB: A Tale of Two Settings
	Slide 42: MAB: A Tale of Two Settings
	Slide 43: Strategies for MAB
	Slide 44: Strategies for MAB
	Slide 45: Strategies for MAB
	Slide 46: Strategies for MAB: script epsilon-greedy
	Slide 47: Strategies for MAB: UCB
	Slide 48: Why is optimism in the face of uncertainty a good principle?
	Slide 49: Being Optimistic with Confidence Bounds
	Slide 50: Being Optimistic with Confidence Bounds
	Slide 51: Recipe for Deriving UCB Algorithms
	Slide 52: Recipe for Deriving UCB Algorithms
	Slide 53: Recipe for Deriving UCB Algorithms
	Slide 54: Recipe for Deriving UCB Algorithms
	Slide 55: Recipe for Deriving UCB Algorithms
	Slide 56: Recipe for Deriving UCB Algorithms
	Slide 57: Recipe for Deriving UCB Algorithms
	Slide 58: Recipe for Deriving UCB Algorithms
	Slide 59: Strategies for MAB: UCB
	Slide 60: Strategies for MAB: UCB
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Recursive Bandits
	Slide 70: Recursive Bandits
	Slide 71: Recursive Bandits
	Slide 72: Recursive Bandits
	Slide 73: Recursive Bandits
	Slide 74: Recursive Bandits
	Slide 75: Recursive Bandits
	Slide 76: Recursive Bandits
	Slide 77: Recursive Bandits
	Slide 78: Regret in Recursive Bandits
	Slide 79: Regret in Recursive Bandits
	Slide 80: Regret in Recursive Bandits
	Slide 81: Regret in Recursive Bandits
	Slide 82: Limitation of Sparse Sampling + UCB
	Slide 83: Limitation of Sparse Sampling + UCB
	Slide 84: Monte Carlo Tree Search (MCTS)
	Slide 85: Monte Carlo Tree Search (MCTS)
	Slide 86: Monte Carlo Tree Search (MCTS)
	Slide 87: Monte Carlo Tree Search (MCTS)
	Slide 88: Monte Carlo Tree Search (MCTS)
	Slide 89: Monte Carlo Tree Search (MCTS)
	Slide 90: Monte Carlo Tree Search (MCTS)
	Slide 91: Estimating Heuristics with Rollouts
	Slide 92: Estimating Heuristics with Rollouts
	Slide 93: Estimating Heuristics with Rollouts
	Slide 94: Estimating Heuristics with Rollouts
	Slide 95: Monte Carlo Tree Search (MCTS)
	Slide 96: Monte Carlo Tree Search (MCTS)
	Slide 97
	Slide 98
	Slide 99: Monte Carlo Tree Search (MCTS)
	Slide 100: Monte Carlo Tree Search (MCTS)
	Slide 101: Monte Carlo Tree Search (MCTS)
	Slide 102: Monte Carlo Tree Search (MCTS)
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Monte Carlo Tree Search (MCTS)
	Slide 109
	Slide 110
	Slide 111: Monte Carlo Tree Search (MCTS)
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Monte Carlo Tree Search (MCTS)
	Slide 119: Monte Carlo Tree Search (MCTS)
	Slide 120: Monte Carlo Tree Search (MCTS)
	Slide 121: MCTS Backpropagation
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126: MCTS Summary
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151: UCT: MCTS + UCB
	Slide 152: Summary

