Online Planning in MDPs:
Monte Carlo Methods

Tom Silver
Machine Learning for Robot Planning

Princeton University
Fall 2025

Recap & Preview

 Last time: started online planning for MDPs

* Current state known
« Agent “in the wild”
* Interleaving planning and execution

Recap & Preview

 Last time: started online planning for MDPs

* Current state known
« Agent “in the wild”
* Interleaving planning and execution

« Considered reachability and heuristics
* Expectimax search exploits reachability
 Leaf heuristic evaluation, RTDP, determinization use heuristics

Recap & Preview

 Last time: started online planning for MDPs

* Current state known
« Agent “in the wild”
* Interleaving planning and execution

« Considered reachability and heuristics
* Expectimax search exploits reachability
 Leaf heuristic evaluation, RTDP, determinization use heuristics

* Some MDPs are still too hard!

* One hard case: very large transition distributions
* Another hard case: long horizons and sparse rewards

MDPs with Very Large Transition Distributions

Recall Bellman backups:

* Given state s, for each a, for each possible
next state s’, update V (s).

When number of possible next states is
large, Bellman backups will be slow.

MDPs with Very Large Transition Distributions

Recall Bellman backups:

* Given state s, for each a, for each possible
next state s’, update V (s).

When number of possible next states is
large, Bellman backups will be slow.

Examples:
1. “Chase” with multiple bunnies (or Pacman with

(J
(-]

= ¥ (a)]

'ﬂ (®)

=4 [
=J| (e

o \2/)
g
Q

ghosts) ﬁ

2. Server farm; any server might fail with small
probability

3. Pathological MDP, small probability of h

transitioning anywhere

MDPs with Very Large Transition Distributions

Recall Bellman backups:

* Given state s, for each a, for each possible

next state s’, update V (s).

When number of possible next states is
large, Bellman backups will be slow.

Examples:

1. “Chase” with multiple bunnies (or Pacman with
ghosts)

2. Server farm; any server might fail with small
probability

3. Pathological MDP, small probability of

transitioning anywhere

Almost all methods we've
seen use Bellman backups.
What's the exception?

&
la [® .
el LO)

LS

Simulator Access to MDPs

* Possible next states may be too big to enumerate.
« Example: server farm with 100 servers, 2% next possible states

Simulator Access to MDPs

* Possible next states may be too big to enumerate.
« Example: server farm with 100 servers, 2% next possible states

* Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given s and a

« Example: flip a coin 100 times to sample a next state

Simulator Access to MDPs

* Possible next states may be too big to enumerate.
« Example: server farm with 100 servers, 2% next possible states

* Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given s and a

« Example: flip a coin 100 times to sample a next state

« Simulator access (a.k.a. generative access) to an MDP:
We can only sample s" ~ P(:| s, a).

Simulator Access to MDPs

* Possible next states may be too big to enumerate.
« Example: server farm with 100 servers, 2% next possible states

* Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given s and a

« Example: flip a coin 100 times to sample a next state

« Simulator access (a.k.a. generative access) to an MDP:
We can only sample s" ~ P(:| s, a).

We're going to need some new planning algorithms...

Monte Carlo Bellman Backups

* |dea: replace full Bellman backup with Monte Carlo (MC)
Bellman backup, which samples next states instead.

Monte Carlo Bellman Backups

* |dea: replace full Bellman backup with Monte Carlo (MC)
Bellman backup, which samples next states instead.

* Another view: we're approximating the transition distribution
with a sampling distribution

Monte Carlo Bellman Backups

* |dea: replace full Bellman backup with Monte Carlo (MC)
Bellman backup, which samples next states instead.

* Another view: we're approximating the transition distribution
with a sampling distribution

MonTeECARLOBELLMANBACKUP(S,V, S, A, P, R, v, w)
1 vs = —oo / New estimate for V' (s)

2 foreachac A Finite horizon case
3 gsa = 0 / New estimate for Q(s, a) .

4 repeat w times IS analogous

5 ns ~ P(- | s,a) #/ Simulator access only

6 gsa = gsa + = (R(s, a,ns) +4V[ns])
7 vs = max (vs, gsa)
8 returnvs

Sparse Sampling

« Sparse sampling = Expectimax + MC Bellman backups

Sparse Sampling
SPARSESAMPLING (S0, S, A, P, R, H, w)

1 / a.k.a. MONTECARLOEXPECTIMAXSEARCH

» Sparse sampling = 2 return argmax, Q(so,,0,S, A, P, R, H, w)
Ingplfctlmax + MC Bellman Ofs. 3 4.5, A P, R, H.0)
ackups : 1sa = 0
2 repeat w times
. 3 ns ~ P(- | s,a) / Simulator access only
* Nice property: can get 4 Vns = V(s,t,S, A, P,R, H,w)
optimality guarantees that 2 asa=asat & (R(s,a,n8) + 7Vns)
depend only on w and H, not e A
on |§| (Kearns, Mansour, and V(s,t,S, A, P, R, H,w)
Ng 1999). 1 ift=H
2 return 0

3 return maxa Q(s,a,t,S, A, P, R, H,w)

Tom Silver - Princeton University - Fall 2025 16

Sparse sampling
H=2w=3

Tom Silver - Princeton University - Fall 2025

17

Sparse sampling
H=2w=3

Tom Silver - Princeton University - Fall 2025

18

Sparse sampling
H=2w=3

Tom Silver - Princeton University - Fall 2025

19

Sparse sampling
H=2w=3

Tom Silver - Princeton University - Fall 2025

20

Sparse sampling
H=2w=3

Note:

States could be repeated
Actual # successors could be >> 3

Tom Silver - Princeton University - Fall 2025

21

Sparse sampling
H=2w=3

Expecti-!

Tom Silver - Princeton University - Fall 2025

22

Sparse sampling
H=2w=3

Max!

VA

Tom Silver - Princeton University - Fall 2025

23

Sparse sampling
H=2w=3

Expecti-!

m

Tom Silver - Princeton University - Fall 2025

24

Sparse sampling
H=2w=3

Max!

s e

/N

N

Tom Silver - Princeton University - Fall 2025

Limitations of Sparse Sampling

» Recall limitation of expectimax: exhaustive AODAG building

* Sparse sampling is similarly exhaustive
* |t does not use reward info at all in building the AODAG

Limitations of Sparse Sampling

» Recall limitation of expectimax: exhaustive AODAG building

* Sparse sampling is similarly exhaustive
* |t does not use reward info at all in building the AODAG

« RTDP was better: it built out using value estimates
« But RTDP still performed exhaustive Bellman backups

Limitations of Sparse Sampling

» Recall limitation of expectimax: exhaustive AODAG building

* Sparse sampling is similarly exhaustive
* |t does not use reward info at all in building the AODAG

« RTDP was better: it built out using value estimates
« But RTDP still performed exhaustive Bellman backups

* Moreover, RTDP may be a little “too greedy”

* Always expands AODAG according to current best estimate
* Does not explore parts of AODAG where estimates are uncertain

Limitations of Sparse Sampling

» Recall limitation of expectimax: exhaustive AODAG building

* Sparse sampling is similarly exhaustive
* |t does not use reward info at all in building the AODAG

« RTDP was better: it built out using value estimates
« But RTDP still performed exhaustive Bellman backups

* Moreover, RTDP may be a little “too greedy”

* Always expands AODAG according to current best estimate
* Does not explore parts of AODAG where estimates are uncertain

Let’s study this in special case: H = 1.

Multi-armed Bandits (MAB)

https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/

https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/

Multi-armed Bandits (MAB)

Consider finite horizon MDP, H = 1. Simulator access only.

And just one fixed initial state.

Multi-armed Bandits (MAB)

Consider finite horizon MDP, H = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat M times:
1. Selecta € A

Multi-armed Bandits (MAB)

Consider finite horizon MDP, H = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat M times:
1. Selecta e A
2. Receive sample s’ € P(:| s,a)

Multi-armed Bandits (MAB)

Consider finite horizon MDP, H = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat M times:
1. Selecta € A

2. Receive sample s’ € P(:| s,a)

3. Observereward R(s,a,s")

Multi-armed Bandits (MAB)

Consider finite horizon MDP, H = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat M times:
1. Selecta € A How? This is the challenge.

2. Receive sample s’ € P(:| s,a)
3. Observereward R(s,a,s")

Multi-armed Bandits (MAB)

Consider finite horizon MDP, H = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat M times:
1. Selecta € A How? This is the challenge.

2. Receive sample s’ € P(:| s,a)
3. Observereward R(s,a,s")

What's the objective?

MAB: A Tale of Two Settings objective: minimize regret

MAB: A Tale of Two Settings objective: minimize regret

Simple Regret

« After M samples, take one
final action and receive 1y, 4.

* Simple regret: .1 — 41
where 1y, ;1 is best possible
under clairvoyant policy.

MAB: A Tale of Two Settings objective: minimize regret

Simple Regret

« After M samples, take one
final action and receive 1y, 4.

* Simple regret: .1 — 41
where 1y, ;1 is best possible
under clairvoyant policy.

* Don’t care about ry, ..., 1.
 Just want informative data.
* A.k.a. selection problem.

MAB: A Tale of Two Settings objective: minimize regret

Simple Regret Cumulative Regret
« After M samples, take one Cumulative regret:
final action and receive 1y, 1. riy +otry — g+ Fry).

* Simple regret: .1 — 41
where 1y, ;1 is best possible
under clairvoyant policy.

* Don’t care about ry, ..., 1.
 Just want informative data.
* A.k.a. selection problem.

MAB: A Tale of Two Settings objective: minimize regret

Simple Regret Cumulative Regret
« After M samples, take one Cumulative regret:
final action and receive 1y, 1. riy +otry — g+ Fry).
» Simple regret: ry .1 — "y+1 * Exploration-exploitation: at
where 1y, ;1 is best possible each step, should we select
under clairvoyant policy. action believed to be best
» Don't care about 1y, ..., 1. (exploit) or try one we're

uncertain about (explore)?
e Just want informative data. (exp)

* A.k.a. selection problem.

MAB: A Tale of Two Settings objective: minimize regret

Simple Regret

« After M samples, take one
final action and receive 1y, 4.

* Simple regret: .1 — 41
where 1y, ;1 is best possible
under clairvoyant policy.

* Don’t care about ry, ..., 1.
 Just want informative data.
* A.k.a. selection problem.

Cumulative Regret

 Cumulative regret:
ry +otry —(p + o+ 1y).

* Exploration-exploitation: at
each step, should we select
action believed to be best
(exploit) or try one we're
uncertain about (explore)?

When would each make more sense?

Strategies for MAB

* Most strategies maintain samplelestimate of Q function:
Q(S, a) = — z Ti s not important here,
|ja| €T,

but will be later

where 7, is the set of step indices where action a was selected.

Strategies for MAB

* Most strategies maintain samplelestimate of Q function:
Q(S, a) = — z Ti s not important here,
|ja| €T,

but will be later

where 7, is the set of step indices where action a was selected.

. Number of times we
* Notation: N(s,a) = |7,]. have tried a

Strategies for MAB

* Most strategies maintain samplelestimate of Q function:
Q(S, a) = — Z Ti s not important here,
|ja| €T,

but will be later

where 7, is the set of step indices where action a was selected.

. Number of times we
* Notation: N(s,a) = |7,]. have tried a

Why might “always select argmax, Q(s,a)” be
a suboptimal strategy?

Strategies for MAB: e-greedy

Epsilon-greedy strategy

* With probability ¢, select random action (explore)
» Otherwise, select argmax, Q(s, a) (exploit)

If there’s an action that has never been tried (N(s,a) = 0), select it.

Strategies for MAB: UCB

Upper confidence bounds (UCB)
Main idea: optimism in the face of uncertainty.

* New restaurant in town! | don’t know if it's good, but
optimistically, it might be fantastic! Let’s eat.

 New course offering! | don’t know if it's good, but optimistically,
it might be. Let’s take it!

Why is optimism in the face of
uncertainty a good princigle2

* [f your optimistic predictions are
correct, you'll be thrilled!

* |If they're not, you will quickly
discover that you were wrong
from the new data.

» Contrast with pessimism.

Being Optimistic with Confidence Bounds

» Suppose | believe that with 95% probability, Q(s, a,) is between
-1.25 and 4.75.

* Optimism in the face of uncertainty says: it’s plausibly possible
that Q(s,a,) = 4.75, so I'm going to assume that it is.

Being Optimistic with Confidence Bounds

» Suppose | believe that with 95% probability, Q(s, a,) is between
-1.25 and 4.75.

* Optimism in the face of uncertainty says: it’s plausibly possible
that Q(s,a,) = 4.75, so I'm going to assume that it is.

* | also think that with 95% probability, —3.0 < 0(s, a,) < 5.0.

« Optimistically, O(s, a,) > Q(s,a4). So, I'll choose a,!

Recipe for Deriving UCB Algorithms

Recipe for Deriving UCB Algorithms

* For each action a € A, define random variables X}, ... X* where X}
represents the reward for the it" try of action a.

2

 Note that these X} are i.i.d. with distribution R(s,a,S"), where S’
P(s' | s,a), which has mean Q(s,a).

Recipe for Deriving UCB Algorithms

* For each action a € A, define random variables X}, ... X* where X}
represents the reward for the it" try of action a.

2

 Note that these X} are i.i.d. with distribution R(s,a,S"), where S’
P(s' | s,a), which has mean Q(s,a).

o« Let X = % m . X.. Represents Q(s,a) after n tries of a.

Recipe for Deriving UCB Algorithms

* For each action a € A, define random variables X}, ... X* where X}
represents the reward for the it" try of action a.

 Note that these X! are i.i.d. with distribution R(s,a, S'), where S’ ~
P(s' | s,a), which has mean Q(s,a).

o« Let X = % m . X.. Represents Q(s,a) after n tries of a.

« Make some assumptions about the distribution (e.g., it is subgaussian)
and use some concentration bounds (e.g, Chebyshev) to derive an
inequality like...

Recipe for Deriving UCB Algorithms

2 log (%)
\ n

P(Q(s,a) = X +

)< 6 Foranyd € (0,1)

Tom Silver - Princeton University - Fall 2025 55

Recipe for Deriving UCB Algorithms

2 log (%)
\ n

P(O(s,a) =)?g +) <6 Foranyd € (0,1)

After n tries of action a, | can be sure, with (1 — &) probability,
that my estimate of the value of a is within a constant from the
true value.

Tom Silver - Princeton University - Fall 2025 56

Recipe for Deriving UCB Algorithms

1
~ 2 log (3)
P(Q(s,a) 2X§}+V -) <6 Foranyd € (0,1)

After n tries of action a, | can be sure, with (1 — &) probability,
that my estimate of the value of a is within a constant from the
true value.

Given a desired confidence level, like (1 — §) = 0.95, the most

optimistic plausible estimate of the true value is X* +
constant.

Tom Silver - Princeton University - Fall 2025 57

Recipe for Deriving UCB Algorithms

As n gets larger, or as 2 log (l)
1 — & gets larger, bound S o)
gets tighter. P(Q(s,a) = X} + \ o) <0 PForanyd € (0,1)

After n tries of action a, | can be sure, with (1 — &) probability,
that my estimate of the value of a is within a constant from the
true value.

Given a desired confidence level, like (1 — §) = 0.95, the most

optimistic plausible estimate of the true value is X* +
constant.

Tom Silver - Princeton University - Fall 2025 58

Strategies for MAB: UCB

Note resemblance to
concentration bounds!

Upper confidence bounds (UCB)

Idea: construct confidence intervals for Q, then be optimistic in the
face of uncertainty.

¢$(m)
JN(s,a)
where ¢ can be several functions; often ¢(m) = c,/log(m) for a
hyperparameter c.

At step m, select: argmax, [Q (s,a) +

Intuition: as number of tries increases, shift
from exploration to exploitation.

Strategies for MAB: UCB

Upper confidence bounds (UCB)

« UCB attains optimal cumulative regret (Lai & Robbins 1985)
* |t does not attain optimal simple regret (Bubeck et al. 2010)

« But it's widely used in planning contexts nonetheless, and works
well in practice

Real(ish) Q

UniformRandom, Seed 1: Step O
Cumulative Rewards: 0.00

100
5 - 5 -
4 A 4 80 -
3 - 3
60 -
2 -I“-Jl 2
- =
1 o 1
B
04— 0
1 _1_ ED‘
2 _2_
I I I I I | | I I I D I I I | |
D01 2 3 4 001 2 3 4 01 2 3 4
Action Action Action

Tom Silver - Princeton University - Fall 2025

61

Real(ish) Q

ExploitOnly, Seed 1: Step O
Cumulative Rewards: 0.00

100
5 - 5 -
4 A 4 80 -
3 - 3
60 -
2 -I“-Jl 2
- =
1 O 1
B
04 = 0
1 _1_ ED‘
2 _2_
I I I I I | | I I I D I I I | |
D01 2 3 4 001 2 3 4 01 2 3 4
Action Action Action

Tom Silver - Princeton University - Fall 2025

62

Real(ish) Q

EpsilonGreedy, Seed 0: Step 0
Cumulative Rewards: 0.00

100
5 - 5 -
4 A 4 80 -
3 - 3
60 -
2 -I“-Jl 2
e =
1 o 1
B
04 = 0
1 _1_ ED‘
2 _2_
I I I I I | | I I I D I I I | |
D01 2 3 4 001 2 3 4 01 2 3 4
Action Action Action

Tom Silver - Princeton University - Fall 2025

63

Real(ish) Q

EpsilonGreedy, Seed 1: Step 0
Cumulative Rewards: 0.00

100
5 - 5 -
4 4 80 -
3 - 3
60 -
2 -I“-Jl 2
- =
1 o 1
B
04 = 0
1 _1_ ED‘
2 _2_
I I I I I | | I I I D I I I | |
D01 2 3 4 001 2 3 4 01 2 3 4
Action Action Action

Tom Silver - Princeton University - Fall 2025

64

Real(ish) Q

UCB, Seed 0: Step O

Cumulative Rewards: 0.00

100
5 - 5 -
4 A 4 80 -
3 - 3
60 -
2 -I“-Jl 2
- =
1 o 1
B
04 = 0
1 _1_ ED‘
2 _2_
I I I I I | | I I I D I I I | |
D1 2 3 4 001 2 3 4 01 2 3 4
Action Action Action

Tom Silver - Princeton University - Fall 2025

65

Real(ish) Q

UCB, Seed 1: Step O

Cumulative Rewards: 0.00

100
5 - 5 -
4 4 80 -
3 - 3
60 -
2 -I“-Jl 2
- =
1 O 1
B
04 = 0
1 _1_ ED‘
2 _2_
I I I I I | | I I I D I I I | |
D01 2 3 4 001 2 3 4 01 2 3 4
Action Action Action

Tom Silver - Princeton University - Fall 2025

66

_ Uniform Random Exploit Only Epsilon Greedy

Mean Cumulative Reward 55.70 141.98 134.75 149.70
Std Cumulative Reward 22.94 44.09 37.66 36.23
Mean Final Reward 1.98 1.22 1.72 2.34
Std Final Reward 3.12 1.84 3.01 3.51

Tom Silver - Princeton University - Fall 2025 67

_ Uniform Random Exploit Only Epsilon Greedy

Mean Cumulative Reward 55.70 141.98 134.75 149.70
Std Cumulative Reward 22.94 44.09 37.66 36.23
Mean Final Reward 1.98 1.22 1.72 2.34
Std Final Reward 3.12 1.84 3.01 3.51

Lots more on Bandits:

« “Bandit Algorithms.” Lattimore & Szepesvari (2020). Free online.
» https://banditalgs.com/

Tom Silver - Princeton University - Fall 2025 68

https://banditalgs.com/
https://banditalgs.com/

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

Arm 1 Arm 2

. -
o g CRCRC

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1. :

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1. :

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1. :

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1. :

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1. :

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1. :

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1. ~

CIlC
N,

Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1.

* Could we recursively apply bandit approaches like UCB within
sparse sampling?
* Sure!

Regret in Recursive Bandits

« At the root, it's clear that we care about simple regret, rather than
cumulative regret.

Regret in Recursive Bandits

« At the root, it's clear that we care about simple regret, rather than
cumulative regret.

 However, beyond the root, the story is less clear [1].

* Each non-root state node s needs to figure out both the best action
to take at s, and the value V (s), for use by ancestors.

[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).

Regret in Recursive Bandits

« At the root, it's clear that we care about simple regret, rather than
cumulative regret.

 However, beyond the root, the story is less clear [1].

* Each non-root state node s needs to figure out both the best action
to take at s, and the value V (s), for use by ancestors.

* These are somewhat competing: if all | need is to check that a is best,
it could make sense to thoroughly check other actions, making sure
they're not better.

« But if what | need is V(s) = Q(s, a), then | need more a samples.

[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).

Regret in Recursive Bandits

« At the root, it's clear that we care about simple regret, rather than
cumulative regret.

 However, beyond the root, the story is less clear [1].

* Each non-root state node s needs to figure out both the best action
to take at s, and the value V (s), for use by ancestors.

* These are somewhat competing: if all | need is to check that a is best,
it could make sense to thoroughly check other actions, making sure
they're not better.

« But if what | need is V(s) = Q(s, a), then | need more a samples.

 For this reason, some works (e.g. [2]) advocate using one strategy
at/near the root, and a different strategy elsewhere.

[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).
[2] “Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search.” Pepels et al. (2014).

Limitation of Sparse Sampling + UCB

* Even with a smarter bandits strategy, sparse sampling suffers
from poor anytime performance

* Anytime performance: evaluation of the best policy found for any given
computational budget (e.g., wall clock time)

Limitation of Sparse Sampling + UCB

* Even with a smarter bandits strategy, sparse sampling suffers
from poor anytime performance

* Anytime performance: evaluation of the best policy found for any given
computational budget (e.g., wall clock time)

* [n general, sparse sampling completely evaluates each subtree
before returning to the parent.

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)

Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)

Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG
2. Using heuristics to evaluate leaves

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)
Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

2. Using heuristics to evaluate leaves
3. Sparse sampling of transition model

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)

Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG
2. Using heuristics to evaluate leaves

3. Sparse sampling of transition model

4. MAB exploration techniques

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)

Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG
Using heuristics to evaluate leaves

Sparse sampling of transition model

MAB exploration techniques

Expanding AODAG gradually

bk LN

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)

Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG
Using heuristics to evaluate leaves

Sparse sampling of transition model

MAB exploration techniques

Expanding AODAG gradually

bk LN

One new idea: estimating heuristics with rollouts.

Estimating Heuristics with Rollouts

* To get cheap heuristic for a state, MCTS uses rollouts.

* A rollout is a trajectory of states, actions, and rewards sampled
from the MDP with a policy m.4110ut-

Estimating Heuristics with Rollouts

* To get cheap heuristic for a state, MCTS uses rollouts.

* A rollout is a trajectory of states, actions, and rewards sampled
from the MDP with a policy m.4110ut-

» Estimated value is average of cumulative rollout rewards
« With temporal discounting applied as needed

Estimating Heuristics with Rollouts

* To get cheap heuristic for a state, MCTS uses rollouts.

* A rollout is a trajectory of states, actions, and rewards sampled
from the MDP with a policy m.4110ut-

» Estimated value is average of cumulative rollout rewards
« With temporal discounting applied as needed

« Common choice of w4104t IS random action selection
* Domain-specific knowledge or machine learning can also be used

Estimating Heuristics with Rollouts

* To get cheap heuristic for a state, MCTS uses rollouts.

* A rollout is a trajectory of states, actions, and rewards sampled
from the MDP with a policy m.4110ut-

» Estimated value is average of cumulative rollout rewards
« With temporal discounting applied as needed

« Common choice of w4104t IS random action selection
* Domain-specific knowledge or machine learning can also be used

When would rollouts give good or
bad heuristic estimates?

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.

Unlike expectimax / sparse sampling, but like RTDP,
we’re going to maintain and update Q for nodes in the
AODAG, rather than calculating them once and for

all.

Example AODAG during MCTS

/

.

Tom Silver - Princeton University - Fall 2025

97

Example AODAG during MCTS

Important note: each gray box now includes both

Q Q.(s,a) and N, (s, a) (for action nodes).

We don’t need to store anything at state nodes.

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Pick the leaf as follows:

1. Start at the root

2. Select an action (using tree policy)
3. Sample a next state

4. Repeat 2-3 until a leaf is reached

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Pick the leaf as follows:

1. Start at the root
2. Select an action (using tree policy) Use MAB ideas

3. Sample a next state
4. Repeat 2-3 until a leaf is reached

Tom Silver - Princeton University - Fall 2025 103

7
()

3/ /)

S

1/ m/

Tom Silver - Princeton University - Fall 2025 107

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

7
()

3 /o /)

S

1/ m/

Tom Silver - Princeton University - Fall 2025 109

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

3. Simulation: Calculate a heuristic value for the new state node
using rollouts.

Tom Silver - Princeton University - Fall 2025 112

L9

n/ m s

113

sity - Fall 2025

Univer

Tom Silver - Princeton

114

sity - Fall 2025

Univer

115

sity - Fall 2025

L9

116

sity - Fall 2025

Univer

Tom Silver - Princeton

N
/ \
|)
_
P
/ N\
A
/ /
/ /
/ /
v v/
N
i)
\\ B /

— Notation: let p denote the

estimated heuristic from rollouts.

Tom Silver - Princeton University - Fall 2025 117

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

3. Simulation: Calculate a heuristic value for the new state node

using rollouts. , o ,
But if you have a heuristic, maybe use that instead!

But, good to be admissible.

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

3. Simulation: Calculate a heuristic value for the new state node
using rollouts.

4. Backpropagation: Update 0 and N for the selected state and
action and all ancestors.

Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

3. Simulation: Calculate a heuristic value for the new state node
using rollouts.

4. Backpropagation: Update 0 and N for the selected state and

action and all ancestors.
Not neural network

backprop!

MCTS Backpropagation

* Q.(s,a) will be the average of all cumulative rewards seen during
planning, when starting at s at time t and taking a.

* And, N, (s, a) should be the visitation counts.

 Backpropagation: given one new trajectory, update Q, N.

Updating V,(s',a’) « 1
and 0,(s’,a") < p.

\

Tom Silver - Princeton University - Fall 2025 122

Updating NV (s,a) « N,(s,a) + 1

G

el

al

Updating V,(s,a) « N,(s,a) + 1
and — (S, a)) (s,a)—1 (S,a)-lilsi’g),a,s)+yQ1(s , a)

Running average!
Tom Silver - Princeton University - Fall 2025 124

Running average? Why not max?

« Taking a max instead is an
option, but less standard [1]

* As number of trajectories
increases, and tree policy gets
more exploit-y, it will be that

a
. /
running average = max. / ﬁ
AN

/

a

Updating V,(s,a) « N,(s,a) + 1
and — (S, a)) (s,a)—1 (S,a)tfg)’a’s)+]/Q1(S , a)

Running average!

Tom Silver - Princeton University - Fall 2025 125
[1] https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf

https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf

MCTS Summary

/—v Selection —— Expansion —— Simulation —> Backpropagation \
&

Tree Def'ault

Policy Policy
v

N\ A /

“A Survey of Monte Carlo Tree Search Methods.” Browne et al. (2012).

Tom Silver - Princeton University - Fall 2025 126

MCTS(so, S, A, P, R,)
Q = dict() / Estimate for Q+(s, a)
N = dict() / Visitation counts NV;(s, a)
repeat until time runs out
SIMULATE(so, S, A, P, R,7v,Q,N,0) / Updates Q and N
return argmax_, Q(0, so, a)

Ol = QWO N =

Tom Silver - Princeton University - Fall 2025 127

SimuLAaTE(S, S, A, P, R,v,Q,N, t)

SO O NG WOIDN -

—_
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHEeurISTIC(S, S, A, P, R,) / Run random rollouts
a = ExprLore(s, S, A, P, R,v,Q,N, t) / differs between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurate(ns, S, A, P, R,v,Q, N, t + 1)

N(t,s,a) = N(t,s,a) +1

Q(t, S, a) — (N(t,s,a)—bl(lgfls(’z,)s,a)+qtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 128

@

SimuLaTE(s, 8, A, P, R,v,Q,N, t)

1

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

fora e A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
a = ExpLore(s, S, A, P, R, v,Q,N, t) / differs between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a) + 1

Q(t,s,a) = (N(t’s,a)_N(lt)?s(;’)s’a)+qtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 129

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we’ve never visited this state at this depth before
2 |if (t,s,a) € Nfor an arbitrary a € A| False
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 130

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1

2
3
4
5
6
7
8
9
0

1
11
12

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts

a = ExpLors(s, S, A, P, R,v,Q,N, t) / differs between MCTS algs

ns ~ P(- | s, a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 131

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLori(s,S, A, P, R,~v,Q,N, t) / differs between MCTS algs
8 |ns ~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—N(lt)’Qs(";,)s,a)—I—qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 132

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns) + ySmmurate(ns, S, A, P, R,v,Q,N, t + 1
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 133

SmmuLAaTE(S, S, A, P, R,~v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 134

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we’ve never visited this state at this depth before
2 |if (t,s,a) € Nfor an arbitrary a € A| False
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 135

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 | a = ExrLori(s, S, A, P, R,~v,Q,N, t) |/ differs between MCTS algs
8 ns~P([s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 136

—

O O O IO Ul =W

—

—_ =
N =

SimuLaTE(s, S, A, P, R,v,Q,N, t)

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
a = ExpLore(s, S, A, P, R,v,Q,N, t) / differs between MCTS algs

ns ~ P(- | s,a)

qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N<t’s,a)_N(lt),Qs(,Z’)S’a)+qtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 137

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 qtsa = R(s,a,ns) + Smurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 138

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 qtsa = R(s,a,ns) + Smurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 139

SimMuLATE(S, S, A, P, R,v,Q,N, t)

—

O O O IO Ul =W

—

—_ =
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
a = ExpLore(s, S, A, P, R, v,Q,N, t) / differs between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 140

—

O O O IO Ul =W

—

—_ =
N =

SimuLaTE(s, S, A, P, R,v,Q,N, t)

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A| True
forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
a = ExpLore(s, S, A, P, R, v,Q,N, t) / differs between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 141

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € N for an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHEeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 142

A

e

N

e A

O

SimuLaTE(s, S, A, P, R,v,Q,N, t)

O O O ITANUI = WDN -

—_ = =
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t.s.a) =0

return|EstimateHeurIsTIC(S, S, A, P, R,)|/ Run random rollouts
a = ExpLORE(S, S, A, P, R,7,Q,N, t) // ditfers between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 143

/

SimuLaTE(s, S, A, P, R,v,Q,N, t)

O O O ITANUI = WDN -

—_ = =
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t.s.a) =0

return|EstimateHeurIsTIC(S, S, A, P, R,)|/ Run random rollouts
a = ExpLORE(S, S, A, P, R,7,Q,N, t) // ditfers between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 144

A

e

N

e A

O

SimuLaTE(s, S, A, P, R,v,Q,N, t)

O O O ITANUI = WDN -

—_ = =
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t.s.a) =0

return|EstimateHeurIsTIC(S, S, A, P, R,)|/ Run random rollouts
a = ExpLORE(S, S, A, P, R,7,Q,N, t) // ditfers between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)

Tom Silver - Princeton University - Fall 2025 145

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 146

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before

2 if (t,s,a) € Nfor an arbitrary a € A
3 fora e A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 lqtsa = R(s,a,ns) + ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 |N(t,s,a) = N(t,s,a)+1

11 1Q(t;s,a) = (N(Ls’a)_N(lt),Qs(:)S’a)Jrqtsa

12 |return Q(t,s, a)

Tom Silver - Princeton University - Fall 2025 147

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)

Tom Silver - Princeton University - Fall 2025 148

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before

2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 lqtsa = R(s,a,ns) + ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 |N(t,s,a) = N(t,s,a)+1

11 1Q(t;s,a) = (N(Ls’a)_N(lt),Qs(,Z)S’a)Jrqtsa

12 |return Q(t,s, a)

Tom Silver - Princeton University - Fall 2025 149

SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R,) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—N(lt)’Qs(";,)s,a)—I—qtsa
12 |return Q(t,s, a)

Tom Silver - Princeton University - Fall 2025 150

UCT: MCTS + UCB

* Probably the most popular algorithm in the MCTS family is
Upper Confidence Trees (UCT).

« UCT uses the exploration bonus from UCB to select actions.

ExpLORE(S, S, A, P, R,~,Q,N)

1 Ns =) ..N(s,a)
2 // cis the hyperparameter discussed in UCB slide

log Ns
N(s,a)

3 return argmax, . 4 Q(s,a) +c

Summary

» Sparse sampling: expectimax search, but instead of full Bellman
backups, use sampling to approximate

* Multi-armed bandits: select actions to minimize regret

* Monte Carlo Tree Search: sparse sampling + MAB exploration
techniques + rollouts to estimate heuristics

	Slide 1: Online Planning in MDPs: Monte Carlo Methods
	Slide 2: Recap & Preview
	Slide 3: Recap & Preview
	Slide 4: Recap & Preview
	Slide 5: MDPs with Very Large Transition Distributions
	Slide 6: MDPs with Very Large Transition Distributions
	Slide 7: MDPs with Very Large Transition Distributions
	Slide 8: Simulator Access to MDPs
	Slide 9: Simulator Access to MDPs
	Slide 10: Simulator Access to MDPs
	Slide 11: Simulator Access to MDPs
	Slide 12: Monte Carlo Bellman Backups
	Slide 13: Monte Carlo Bellman Backups
	Slide 14: Monte Carlo Bellman Backups
	Slide 15: Sparse Sampling
	Slide 16: Sparse Sampling
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Limitations of Sparse Sampling
	Slide 27: Limitations of Sparse Sampling
	Slide 28: Limitations of Sparse Sampling
	Slide 29: Limitations of Sparse Sampling
	Slide 30: Multi-armed Bandits (MAB)
	Slide 31: Multi-armed Bandits (MAB)
	Slide 32: Multi-armed Bandits (MAB)
	Slide 33: Multi-armed Bandits (MAB)
	Slide 34: Multi-armed Bandits (MAB)
	Slide 35: Multi-armed Bandits (MAB)
	Slide 36: Multi-armed Bandits (MAB)
	Slide 37: MAB: A Tale of Two Settings
	Slide 38: MAB: A Tale of Two Settings
	Slide 39: MAB: A Tale of Two Settings
	Slide 40: MAB: A Tale of Two Settings
	Slide 41: MAB: A Tale of Two Settings
	Slide 42: MAB: A Tale of Two Settings
	Slide 43: Strategies for MAB
	Slide 44: Strategies for MAB
	Slide 45: Strategies for MAB
	Slide 46: Strategies for MAB: script epsilon-greedy
	Slide 47: Strategies for MAB: UCB
	Slide 48: Why is optimism in the face of uncertainty a good principle?
	Slide 49: Being Optimistic with Confidence Bounds
	Slide 50: Being Optimistic with Confidence Bounds
	Slide 51: Recipe for Deriving UCB Algorithms
	Slide 52: Recipe for Deriving UCB Algorithms
	Slide 53: Recipe for Deriving UCB Algorithms
	Slide 54: Recipe for Deriving UCB Algorithms
	Slide 55: Recipe for Deriving UCB Algorithms
	Slide 56: Recipe for Deriving UCB Algorithms
	Slide 57: Recipe for Deriving UCB Algorithms
	Slide 58: Recipe for Deriving UCB Algorithms
	Slide 59: Strategies for MAB: UCB
	Slide 60: Strategies for MAB: UCB
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Recursive Bandits
	Slide 70: Recursive Bandits
	Slide 71: Recursive Bandits
	Slide 72: Recursive Bandits
	Slide 73: Recursive Bandits
	Slide 74: Recursive Bandits
	Slide 75: Recursive Bandits
	Slide 76: Recursive Bandits
	Slide 77: Recursive Bandits
	Slide 78: Regret in Recursive Bandits
	Slide 79: Regret in Recursive Bandits
	Slide 80: Regret in Recursive Bandits
	Slide 81: Regret in Recursive Bandits
	Slide 82: Limitation of Sparse Sampling + UCB
	Slide 83: Limitation of Sparse Sampling + UCB
	Slide 84: Monte Carlo Tree Search (MCTS)
	Slide 85: Monte Carlo Tree Search (MCTS)
	Slide 86: Monte Carlo Tree Search (MCTS)
	Slide 87: Monte Carlo Tree Search (MCTS)
	Slide 88: Monte Carlo Tree Search (MCTS)
	Slide 89: Monte Carlo Tree Search (MCTS)
	Slide 90: Monte Carlo Tree Search (MCTS)
	Slide 91: Estimating Heuristics with Rollouts
	Slide 92: Estimating Heuristics with Rollouts
	Slide 93: Estimating Heuristics with Rollouts
	Slide 94: Estimating Heuristics with Rollouts
	Slide 95: Monte Carlo Tree Search (MCTS)
	Slide 96: Monte Carlo Tree Search (MCTS)
	Slide 97
	Slide 98
	Slide 99: Monte Carlo Tree Search (MCTS)
	Slide 100: Monte Carlo Tree Search (MCTS)
	Slide 101: Monte Carlo Tree Search (MCTS)
	Slide 102: Monte Carlo Tree Search (MCTS)
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Monte Carlo Tree Search (MCTS)
	Slide 109
	Slide 110
	Slide 111: Monte Carlo Tree Search (MCTS)
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Monte Carlo Tree Search (MCTS)
	Slide 119: Monte Carlo Tree Search (MCTS)
	Slide 120: Monte Carlo Tree Search (MCTS)
	Slide 121: MCTS Backpropagation
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126: MCTS Summary
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151: UCT: MCTS + UCB
	Slide 152: Summary

