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 Last time: started online planning for MDPs

* Current state known
« Agent “in the wild”
* Interleaving planning and execution

« Considered reachability and heuristics
* Expectimax search exploits reachability
 Leaf heuristic evaluation, RTDP, determinization use heuristics

* Some MDPs are still too hard!

* One hard case: very large transition distributions
* Another hard case: long horizons and sparse rewards
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MDPs with Very Large Transition Distributions

Recall Bellman backups:

* Given state s, for each a, for each possible

next state s’, update V (s).

When number of possible next states is
large, Bellman backups will be slow.

Examples:

1. “Chase” with multiple bunnies (or Pacman with
ghosts)

2. Server farm; any server might fail with small
probability

3. Pathological MDP, small probability of

transitioning anywhere

Almost all methods we've
seen use Bellman backups.
What's the exception?

&
la [® .
el LO)

LS




Simulator Access to MDPs

* Possible next states may be too big to enumerate.
« Example: server farm with 100 servers, 2% next possible states



Simulator Access to MDPs

* Possible next states may be too big to enumerate.
« Example: server farm with 100 servers, 2% next possible states

* Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given s and a

« Example: flip a coin 100 times to sample a next state



Simulator Access to MDPs

* Possible next states may be too big to enumerate.
« Example: server farm with 100 servers, 2% next possible states

* Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given s and a

« Example: flip a coin 100 times to sample a next state

« Simulator access (a.k.a. generative access) to an MDP:
We can only sample s" ~ P(:| s, a).



Simulator Access to MDPs

* Possible next states may be too big to enumerate.
« Example: server farm with 100 servers, 2% next possible states

* Even if we can’t enumerate, it may be possible to efficiently
sample next states from the transition model, given s and a

« Example: flip a coin 100 times to sample a next state

« Simulator access (a.k.a. generative access) to an MDP:
We can only sample s" ~ P(:| s, a).

We're going to need some new planning algorithms...
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Monte Carlo Bellman Backups

* |dea: replace full Bellman backup with Monte Carlo (MC)
Bellman backup, which samples next states instead.

* Another view: we're approximating the transition distribution
with a sampling distribution

MonTeECARLOBELLMANBACKUP(S,V, S, A, P, R, v, w)
1 vs = —oo / New estimate for V' (s)

2 foreachac A Finite horizon case
3 gsa = 0 / New estimate for Q(s, a) .

4 repeat w times IS analogous

5 ns ~ P(- | s,a) #/ Simulator access only

6 gsa = gsa + = (R(s, a,ns) +4V[ns])
7 vs = max (vs, gsa)
8 returnvs




Sparse Sampling

« Sparse sampling = Expectimax + MC Bellman backups



Sparse Sampling
SPARSESAMPLING (S0, S, A, P, R, H, w)

1 / a.k.a. MONTECARLOEXPECTIMAXSEARCH

» Sparse sampling = 2 return argmax, Q(so,,0,S, A, P, R, H, w)
Ingplfctlmax + MC Bellman Ofs. 3 4.5, A P, R, H.0)
ackups : 1sa = 0
2 repeat w times
. 3 ns ~ P(- | s,a) / Simulator access only
* Nice property: can get 4 Vns = V(s,t,S, A, P,R, H,w)
optimality guarantees that 2  asa=asat & (R(s,a,n8) + 7Vns)
depend only on w and H, not e A
on |§| (Kearns, Mansour, and V(s,t,S, A, P, R, H,w)
Ng 1999). 1 ift=H
2 return 0

3 return maxa Q(s,a,t,S, A, P, R, H,w)

Tom Silver - Princeton University - Fall 2025 16



Sparse sampling
H=2w=3
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Sparse sampling
H=2w=3
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Sparse sampling
H=2w=3

Note:

States could be repeated
Actual # successors could be >> 3
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Sparse sampling
H=2w=3

Expecti-!
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Sparse sampling
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Sparse sampling
H=2w=3
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Sparse sampling
H=2w=3

Max!

s e

/N

N

Tom Silver - Princeton University - Fall 2025




Limitations of Sparse Sampling

» Recall limitation of expectimax: exhaustive AODAG building

* Sparse sampling is similarly exhaustive
* |t does not use reward info at all in building the AODAG



Limitations of Sparse Sampling

» Recall limitation of expectimax: exhaustive AODAG building

* Sparse sampling is similarly exhaustive
* |t does not use reward info at all in building the AODAG

« RTDP was better: it built out using value estimates
« But RTDP still performed exhaustive Bellman backups



Limitations of Sparse Sampling

» Recall limitation of expectimax: exhaustive AODAG building

* Sparse sampling is similarly exhaustive
* |t does not use reward info at all in building the AODAG

« RTDP was better: it built out using value estimates
« But RTDP still performed exhaustive Bellman backups

* Moreover, RTDP may be a little “too greedy”

* Always expands AODAG according to current best estimate
* Does not explore parts of AODAG where estimates are uncertain



Limitations of Sparse Sampling

» Recall limitation of expectimax: exhaustive AODAG building

* Sparse sampling is similarly exhaustive
* |t does not use reward info at all in building the AODAG

« RTDP was better: it built out using value estimates
« But RTDP still performed exhaustive Bellman backups

* Moreover, RTDP may be a little “too greedy”

* Always expands AODAG according to current best estimate
* Does not explore parts of AODAG where estimates are uncertain

Let’s study this in special case: H = 1.



Multi-armed Bandits (MAB)

https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/
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Multi-armed Bandits (MAB)

Consider finite horizon MDP, H = 1. Simulator access only.

And just one fixed initial state.
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Multi-armed Bandits (MAB)

Consider finite horizon MDP, H = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat M times:
1. Selecta € A How? This is the challenge.

2. Receive sample s’ € P(:| s,a)
3. Observereward R(s,a,s")

What's the objective?
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MAB: A Tale of Two Settings  objective: minimize regret

Simple Regret

« After M samples, take one
final action and receive 1y, 4.

* Simple regret: .1 — 41
where 1y, ;1 is best possible
under clairvoyant policy.

* Don’t care about ry, ..., 1.
 Just want informative data.
* A.k.a. selection problem.

Cumulative Regret

 Cumulative regret:
ry +otry —(p + o+ 1y).

* Exploration-exploitation: at
each step, should we select
action believed to be best
(exploit) or try one we're
uncertain about (explore)?

When would each make more sense?



Strategies for MAB

* Most strategies maintain samplelestimate of Q function:
Q(S, a) = — z Ti s not important here,
|ja| €T,

but will be later

where 7, is the set of step indices where action a was selected.
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Strategies for MAB

* Most strategies maintain samplelestimate of Q function:
Q(S, a) = — Z Ti s not important here,
|ja| €T,

but will be later

where 7, is the set of step indices where action a was selected.

. Number of times we
* Notation: N(s,a) = |7,]. have tried a

Why might “always select argmax, Q(s,a)” be
a suboptimal strategy?



Strategies for MAB: e-greedy

Epsilon-greedy strategy

* With probability ¢, select random action (explore)
» Otherwise, select argmax, Q(s, a) (exploit)

If there’s an action that has never been tried (N(s,a) = 0), select it.



Strategies for MAB: UCB

Upper confidence bounds (UCB)
Main idea: optimism in the face of uncertainty.

* New restaurant in town! | don’t know if it's good, but
optimistically, it might be fantastic! Let’s eat.

 New course offering! | don’t know if it's good, but optimistically,
it might be. Let’s take it!



Why is optimism in the face of
uncertainty a good princigle2

* [f your optimistic predictions are
correct, you'll be thrilled!

* |If they're not, you will quickly
discover that you were wrong
from the new data.

» Contrast with pessimism.




Being Optimistic with Confidence Bounds

» Suppose | believe that with 95% probability, Q(s, a,) is between
-1.25 and 4.75.

* Optimism in the face of uncertainty says: it’s plausibly possible
that Q(s,a,) = 4.75, so I'm going to assume that it is.



Being Optimistic with Confidence Bounds

» Suppose | believe that with 95% probability, Q(s, a,) is between
-1.25 and 4.75.

* Optimism in the face of uncertainty says: it’s plausibly possible
that Q(s,a,) = 4.75, so I'm going to assume that it is.

* | also think that with 95% probability, —3.0 < 0(s, a,) < 5.0.

« Optimistically, O(s, a,) > Q(s,a4). So, I'll choose a,!
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P(s' | s,a), which has mean Q(s,a).
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Recipe for Deriving UCB Algorithms

* For each action a € A, define random variables X}, ... X* where X}
represents the reward for the it" try of action a.

 Note that these X! are i.i.d. with distribution R(s,a, S'), where S’ ~
P(s' | s,a), which has mean Q(s,a).

o« Let X = % m . X.. Represents Q(s,a) after n tries of a.

« Make some assumptions about the distribution (e.g., it is subgaussian)
and use some concentration bounds (e.g, Chebyshev) to derive an
inequality like...



Recipe for Deriving UCB Algorithms

2 log (%)
\ n

P(Q(s,a) = X +

)< 6 Foranyd € (0,1)
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Recipe for Deriving UCB Algorithms

2 log (%)
\ n

P(O(s,a) = )?g + ) <6 Foranyd € (0,1)

After n tries of action a, | can be sure, with (1 — &) probability,
that my estimate of the value of a is within a constant from the
true value.
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Recipe for Deriving UCB Algorithms

1
~ 2 log (3)
P(Q(s,a) 2X§}+V - ) <6 Foranyd € (0,1)

After n tries of action a, | can be sure, with (1 — &) probability,
that my estimate of the value of a is within a constant from the
true value.

Given a desired confidence level, like (1 — §) = 0.95, the most

optimistic plausible estimate of the true value is X* +
constant.
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Recipe for Deriving UCB Algorithms

As n gets larger, or as 2 log (l)
1 — & gets larger, bound S o)
gets tighter. P(Q(s,a) = X} + \ o ) <0 PForanyd € (0,1)

After n tries of action a, | can be sure, with (1 — &) probability,
that my estimate of the value of a is within a constant from the
true value.

Given a desired confidence level, like (1 — §) = 0.95, the most

optimistic plausible estimate of the true value is X* +
constant.
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Strategies for MAB: UCB

Note resemblance to
concentration bounds!

Upper confidence bounds (UCB)

Idea: construct confidence intervals for Q, then be optimistic in the
face of uncertainty.

¢$(m)
JN(s,a)
where ¢ can be several functions; often ¢(m) = c,/log(m) for a
hyperparameter c.

At step m, select: argmax, [Q (s,a) +

Intuition: as number of tries increases, shift
from exploration to exploitation.



Strategies for MAB: UCB

Upper confidence bounds (UCB)

« UCB attains optimal cumulative regret (Lai & Robbins 1985)
* |t does not attain optimal simple regret (Bubeck et al. 2010)

« But it's widely used in planning contexts nonetheless, and works
well in practice



Real(ish) Q

UniformRandom, Seed 1: Step O
Cumulative Rewards: 0.00

100
5 - 5 -
4 A 4 80 -
3 - 3
60 -
2 -I“-Jl 2
- =
1 o 1
B
04— 0
_1_ _1_ ED‘
_2_ _2_
I I I I I | | I I I D I I I | |
D01 2 3 4 001 2 3 4 01 2 3 4
Action Action Action
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Real(ish) Q

ExploitOnly, Seed 1: Step O
Cumulative Rewards: 0.00

100
5 - 5 -
4 A 4 80 -
3 - 3
60 -
2 -I“-Jl 2
- =
1 O 1
B
04 = 0
_1_ _1_ ED‘
_2_ _2_
I I I I I | | I I I D I I I | |
D01 2 3 4 001 2 3 4 01 2 3 4
Action Action Action
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Real(ish) Q

EpsilonGreedy, Seed 0: Step 0
Cumulative Rewards: 0.00

100
5 - 5 -
4 A 4 80 -
3 - 3
60 -
2 -I“-Jl 2
e =
1 o 1
B
04 = 0
_1_ _1_ ED‘
_2_ _2_
I I I I I | | I I I D I I I | |
D01 2 3 4 001 2 3 4 01 2 3 4
Action Action Action
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Real(ish) Q

EpsilonGreedy, Seed 1: Step 0
Cumulative Rewards: 0.00
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Real(ish) Q

UCB, Seed 0: Step O

Cumulative Rewards: 0.00

100
5 - 5 -
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B
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Real(ish) Q

UCB, Seed 1: Step O

Cumulative Rewards: 0.00

100
5 - 5 -
4 4 80 -
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60 -
2 -I“-Jl 2
- =
1 O 1
B
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_1_ _1_ ED‘
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_ Uniform Random Exploit Only Epsilon Greedy

Mean Cumulative Reward 55.70 141.98 134.75 149.70
Std Cumulative Reward 22.94 44.09 37.66 36.23
Mean Final Reward 1.98 1.22 1.72 2.34
Std Final Reward 3.12 1.84 3.01 3.51
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_ Uniform Random Exploit Only Epsilon Greedy

Mean Cumulative Reward 55.70 141.98 134.75 149.70
Std Cumulative Reward 22.94 44.09 37.66 36.23
Mean Final Reward 1.98 1.22 1.72 2.34
Std Final Reward 3.12 1.84 3.01 3.51

Lots more on Bandits:

« “Bandit Algorithms.” Lattimore & Szepesvari (2020). Free online.
» https://banditalgs.com/
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« Sparse sampling with H = 1 = “Uniform Random” for MAB.
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Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1. ~
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Recursive Bandits

« Sparse sampling with H = 1 = “Uniform Random” for MAB.

* Sparse sampling with H > 1 = naive solution to recursive bandit
problem.

« To determine the “reward” for taking action at depth h, first solve MAB
problem at depth h + 1.

* Could we recursively apply bandit approaches like UCB within
sparse sampling?
* Sure!



Regret in Recursive Bandits

« At the root, it's clear that we care about simple regret, rather than
cumulative regret.
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Regret in Recursive Bandits

« At the root, it's clear that we care about simple regret, rather than
cumulative regret.

 However, beyond the root, the story is less clear [1].

* Each non-root state node s needs to figure out both the best action
to take at s, and the value V (s), for use by ancestors.

* These are somewhat competing: if all | need is to check that a is best,
it could make sense to thoroughly check other actions, making sure
they're not better.

« But if what | need is V(s) = Q(s, a), then | need more a samples.

 For this reason, some works (e.g. [2]) advocate using one strategy
at/near the root, and a different strategy elsewhere.

[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).
[2] “Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search.” Pepels et al. (2014).
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* Even with a smarter bandits strategy, sparse sampling suffers
from poor anytime performance

* Anytime performance: evaluation of the best policy found for any given
computational budget (e.g., wall clock time)



Limitation of Sparse Sampling + UCB

* Even with a smarter bandits strategy, sparse sampling suffers
from poor anytime performance

* Anytime performance: evaluation of the best policy found for any given
computational budget (e.g., wall clock time)

* [n general, sparse sampling completely evaluates each subtree
before returning to the parent.
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Monte Carlo Tree Search (MCTS)

Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG
Using heuristics to evaluate leaves

Sparse sampling of transition model

MAB exploration techniques

Expanding AODAG gradually

bk LN

One new idea: estimating heuristics with rollouts.
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from the MDP with a policy m.4110ut-

» Estimated value is average of cumulative rollout rewards
« With temporal discounting applied as needed

« Common choice of w4104t IS random action selection
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Estimating Heuristics with Rollouts

* To get cheap heuristic for a state, MCTS uses rollouts.

* A rollout is a trajectory of states, actions, and rewards sampled
from the MDP with a policy m.4110ut-

» Estimated value is average of cumulative rollout rewards
« With temporal discounting applied as needed

« Common choice of w4104t IS random action selection
* Domain-specific knowledge or machine learning can also be used

When would rollouts give good or
bad heuristic estimates?
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.

Unlike expectimax / sparse sampling, but like RTDP,
we’re going to maintain and update Q for nodes in the
AODAG, rather than calculating them once and for

all.



Example AODAG during MCTS

/

.
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Example AODAG during MCTS

Important note: each gray box now includes both

Q Q.(s,a) and N, (s, a) (for action nodes).

We don’t need to store anything at state nodes.
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Then, repeat until time runs out:
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Pick the leaf as follows:

1. Start at the root

2. Select an action (using tree policy)
3. Sample a next state

4. Repeat 2-3 until a leaf is reached




Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Pick the leaf as follows:

1. Start at the root
2. Select an action (using tree policy) Use MAB ideas

3. Sample a next state
4. Repeat 2-3 until a leaf is reached
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

3. Simulation: Calculate a heuristic value for the new state node
using rollouts.
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— Notation: let p denote the

estimated heuristic from rollouts.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

3. Simulation: Calculate a heuristic value for the new state node

using rollouts. , o ,
But if you have a heuristic, maybe use that instead!

But, good to be admissible.



Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

3. Simulation: Calculate a heuristic value for the new state node
using rollouts.

4. Backpropagation: Update 0 and N for the selected state and
action and all ancestors.



Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, Q, and N.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

2. Expansion: Sample a next state. Create a new state node and
new child action nodes, one per possible action.

3. Simulation: Calculate a heuristic value for the new state node
using rollouts.

4. Backpropagation: Update 0 and N for the selected state and

action and all ancestors.
Not neural network

backprop!



MCTS Backpropagation

* Q.(s,a) will be the average of all cumulative rewards seen during
planning, when starting at s at time t and taking a.

* And, N, (s, a) should be the visitation counts.

 Backpropagation: given one new trajectory, update Q, N.



Updating V,(s',a’) « 1
and 0,(s’,a") < p.

\
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Updating NV (s,a) « N,(s,a) + 1

G




el

al

Updating V,(s,a) « N,(s,a) + 1
and — (S, a) ) (s,a)—1 (S,a)-lilsi’g),a,s )+yQ1(s , a )

Running average!
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Running average? Why not max?

« Taking a max instead is an
option, but less standard [1]

* As number of trajectories
increases, and tree policy gets
more exploit-y, it will be that

a
. /
running average = max. / ﬁ
AN

/

a

Updating V,(s,a) « N,(s,a) + 1
and — (S, a) ) (s,a)—1 (S,a)tfg)’a’s )+]/Q1(S , a )

Running average!
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[1] https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf



https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf

MCTS Summary

/—v Selection —— Expansion —— Simulation —> Backpropagation \
&

Tree Def'ault

Policy Policy
v

N\ A /

“A Survey of Monte Carlo Tree Search Methods.” Browne et al. (2012).
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MCTS(so, S, A, P, R, )
Q = dict() / Estimate for Q+(s, a)
N = dict() / Visitation counts NV;(s, a)
repeat until time runs out
SIMULATE(so, S, A, P, R,7v,Q,N,0) / Updates Q and N
return argmax_, Q(0, so, a)

Ol = QWO N =
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SimuLAaTE(S, S, A, P, R,v,Q,N, t)

SO O NG WOIDN -

—_
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHEeurISTIC(S, S, A, P, R, ) / Run random rollouts
a = ExprLore(s, S, A, P, R,v,Q,N, t) / differs between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurate(ns, S, A, P, R,v,Q, N, t + 1)

N(t,s,a) = N(t,s,a) +1

Q(t, S, a) — (N(t,s,a)—bl(lgfls(’z,)s,a)+qtsa

return Q(t, s, a)
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@

SimuLaTE(s, 8, A, P, R,v,Q,N, t)

1

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

fora e A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
a = ExpLore(s, S, A, P, R, v,Q,N, t) / differs between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a) + 1

Q(t,s,a) = (N(t’s,a)_N(lt)?s(;’)s’a)+qtsa

return Q(t, s, a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we’ve never visited this state at this depth before
2 |if (t,s,a) € Nfor an arbitrary a € A| False
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1

2
3
4
5
6
7
8
9
0

1
11
12

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts

a = ExpLors(s, S, A, P, R,v,Q,N, t) / differs between MCTS algs

ns ~ P(- | s, a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLori(s,S, A, P, R,~v,Q,N, t) / differs between MCTS algs
8 |ns ~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—N(lt)’Qs(";,)s,a)—I—qtsa
12 returnQ(t,s,a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns) + ySmmurate(ns, S, A, P, R,v,Q,N, t + 1
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SmmuLAaTE(S, S, A, P, R,~v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we’ve never visited this state at this depth before
2 |if (t,s,a) € Nfor an arbitrary a € A| False
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 | a = ExrLori(s, S, A, P, R,~v,Q,N, t) |/ differs between MCTS algs
8 ns~P([s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—b](lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
a = ExpLore(s, S, A, P, R,v,Q,N, t) / differs between MCTS algs

ns ~ P(- | s,a)

qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N<t’s,a)_N(lt),Qs(,Z’)S’a)+qtsa

return Q(t, s, a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 qtsa = R(s,a,ns) + Smurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 qtsa = R(s,a,ns) + Smurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SimMuLATE(S, S, A, P, R,v,Q,N, t)

—

O O O IO Ul =W

—

—_ =
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
a = ExpLore(s, S, A, P, R, v,Q,N, t) / differs between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)
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N =

SimuLaTE(s, S, A, P, R,v,Q,N, t)

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A| True
forac A
N(t,s,a) =0
Q(t,s,a) =0

return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
a = ExpLore(s, S, A, P, R, v,Q,N, t) / differs between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € N for an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHEeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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O

SimuLaTE(s, S, A, P, R,v,Q,N, t)

O O O ITANUI = WDN -

—_ = =
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t.s.a) =0

return|EstimateHeurIsTIC(S, S, A, P, R, )|/ Run random rollouts
a = ExpLORE(S, S, A, P, R,7,Q,N, t) // ditfers between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)
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/

SimuLaTE(s, S, A, P, R,v,Q,N, t)

O O O ITANUI = WDN -

—_ = =
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t.s.a) =0

return|EstimateHeurIsTIC(S, S, A, P, R, )|/ Run random rollouts
a = ExpLORE(S, S, A, P, R,7,Q,N, t) // ditfers between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

O O O ITANUI = WDN -

—_ = =
N =

// Base case: we’ve never visited this state at this depth before
if (t,s,a) € N for an arbitrary a € A

forac A
N(t,s,a) =0
Q(t.s.a) =0

return|EstimateHeurIsTIC(S, S, A, P, R, )|/ Run random rollouts
a = ExpLORE(S, S, A, P, R,7,Q,N, t) // ditfers between MCTS algs
ns ~ P(- | s,a)
qtsa = R(s,a,ns) + ySmmurati(ns, S, A, P, R,v,Q,N,t + 1)
N(t,s,a) = N(t,s,a)+1

Qt;s,a) = (N(Ls’a)_N(lt),Qs(,Z’)S’a)Jrqtsa

return Q(t, s, a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before

2 if (t,s,a) € Nfor an arbitrary a € A
3 fora e A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 lqtsa = R(s,a,ns) + ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 |N(t,s,a) = N(t,s,a)+1

11 1Q(t;s,a) = (N(Ls’a)_N(lt),Qs(:)S’a)Jrqtsa

12 |return Q(t,s, a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—bl(lgf)s(";,)s,a)+qtsa
12 returnQ(t,s,a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before

2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]s,a)
9 lqtsa = R(s,a,ns) + ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 |N(t,s,a) = N(t,s,a)+1

11 1Q(t;s,a) = (N(Ls’a)_N(lt),Qs(,Z)S’a)Jrqtsa

12 |return Q(t,s, a)
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SimuLaTE(s, S, A, P, R,v,Q,N, t)

1 // Base case: we've never visited this state at this depth before
2 if (t,s,a) € Nfor an arbitrary a € A
3 forac A
4 N(t,s,a) =0
5 Q(t,s,a) =0
6 return EstimateHeurisTIC(S, S, A, P, R, ) / Run random rollouts
7 a = ExrLorg(s,S, A, P,R,~v,Q,N, t) / differs between MCTS algs
8 ns~P(-]|s,a)
9 qtsa = R(s,a,ns)+ ySmurate(ns, S, A, P, R,v,Q,N, t + 1)
10 N(t,s,a) = N(t,s,a)+1
11 Q(t, s, a) _ (N(t,s,a)—N(lt)’Qs(";,)s,a)—I—qtsa
12 |return Q(t,s, a)
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UCT: MCTS + UCB

* Probably the most popular algorithm in the MCTS family is
Upper Confidence Trees (UCT).

« UCT uses the exploration bonus from UCB to select actions.

ExpLORE(S, S, A, P, R,~,Q,N)

1 Ns =)  ..N(s,a)
2 // cis the hyperparameter discussed in UCB slide

log Ns
N(s,a)

3 return argmax, . 4 Q(s,a) +c




Summary

» Sparse sampling: expectimax search, but instead of full Bellman
backups, use sampling to approximate

* Multi-armed bandits: select actions to minimize regret

* Monte Carlo Tree Search: sparse sampling + MAB exploration
techniques + rollouts to estimate heuristics
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