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Recap & Preview

• Last time: started online planning for MDPs
• Current state known
• Agent “in the wild”
• Interleaving planning and execution

• Considered reachability and heuristics
• Expectimax search exploits reachability
• Leaf heuristic evaluation, RTDP, determinization use heuristics

• Some MDPs are still too hard!
• One hard case: very large transition distributions
• Another hard case: long horizons and sparse rewards
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MDPs with Very Large Transition Distributions

Recall Bellman backups:
• Given state 𝑠, for each 𝑎, for each possible 

next state 𝑠′, update 𝑉(𝑠).

When number of possible next states is 
large, Bellman backups will be slow. 
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When number of possible next states is 
large, Bellman backups will be slow. 
Examples:
1. “Chase” with multiple bunnies (or Pacman with 

ghosts)
2. Server farm; any server might fail with small 

probability
3. Pathological MDP, small probability of 

transitioning anywhere
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MDPs with Very Large Transition Distributions

Recall Bellman backups:
• Given state 𝑠, for each 𝑎, for each possible 

next state 𝑠′, update 𝑉(𝑠).
When number of possible next states is 
large, Bellman backups will be slow. 
Examples:
1. “Chase” with multiple bunnies (or Pacman with 

ghosts)
2. Server farm; any server might fail with small 

probability
3. Pathological MDP, small probability of 

transitioning anywhere

Almost all methods we’ve 
seen use Bellman backups. 

What’s the exception?
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Simulator Access to MDPs

• Possible next states may be too big to enumerate.
• Example: server farm with 100 servers, 2100 next possible states
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Simulator Access to MDPs

• Possible next states may be too big to enumerate.
• Example: server farm with 100 servers, 2100 next possible states

• Even if we can’t enumerate, it may be possible to efficiently 
sample next states from the transition model, given 𝑠 and 𝑎
• Example: flip a coin 100 times to sample a next state

• Simulator access (a.k.a. generative access) to an MDP:
We can only sample 𝑠′ ∼ 𝑃(⋅∣ 𝑠, 𝑎).

We’re going to need some new planning algorithms…
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Monte Carlo Bellman Backups

• Idea: replace full Bellman backup with Monte Carlo (MC) 
Bellman backup, which samples next states instead.
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Monte Carlo Bellman Backups

• Idea: replace full Bellman backup with Monte Carlo (MC) 
Bellman backup, which samples next states instead.

• Another view: we're approximating the transition distribution 
with a sampling distribution

Finite horizon case 
is analogous
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Sparse Sampling

• Sparse sampling = Expectimax + MC Bellman backups
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Sparse Sampling

• Sparse sampling = 
Expectimax + MC Bellman 
backups

• Nice property: can get 
optimality guarantees that 
depend only on 𝑤 and 𝐻, not 
on |𝒮| (Kearns, Mansour, and 
Ng 1999).
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Sparse sampling
𝐻 = 2, 𝑤 = 3
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Sparse sampling
𝐻 = 2, 𝑤 = 3
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Sparse sampling
𝐻 = 2, 𝑤 = 3

Note:
• States could be repeated
• Actual # successors could be >> 3
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Sparse sampling
𝐻 = 2, 𝑤 = 3

Expecti-!
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Sparse sampling
𝐻 = 2, 𝑤 = 3

Max!
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Sparse sampling
𝐻 = 2, 𝑤 = 3

Max!
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Limitations of Sparse Sampling

• Recall limitation of expectimax: exhaustive AODAG building
• Sparse sampling is similarly exhaustive

• It does not use reward info at all in building the AODAG
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Limitations of Sparse Sampling

• Recall limitation of expectimax: exhaustive AODAG building
• Sparse sampling is similarly exhaustive

• It does not use reward info at all in building the AODAG

• RTDP was better: it built out using value estimates
• But RTDP still performed exhaustive Bellman backups
• Moreover, RTDP may be a little “too greedy”

• Always expands AODAG according to current best estimate
• Does not explore parts of AODAG where estimates are uncertain 

Let’s study this in special case: 𝐻 = 1.
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Multi-armed Bandits (MAB)

https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/
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Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

And just one fixed initial state.
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Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat 𝑀 times:
1. Select 𝑎 ∈ 𝒜
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Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat 𝑀 times:
1. Select 𝑎 ∈ 𝒜
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Multi-armed Bandits (MAB)

Consider finite horizon MDP, 𝐻 = 1. Simulator access only.

Multi-armed Bandits (MAB): Repeat 𝑀 times:
1. Select 𝑎 ∈ 𝒜

2. Receive sample 𝑠′ ∈ 𝑃(⋅∣ 𝑠, 𝑎)

3. Observe reward 𝑅(𝑠, 𝑎, 𝑠′)

What’s the objective?

How? This is the challenge.

Tom Silver - Princeton University - Fall 2025 36



MAB: A Tale of Two Settings Objective: minimize regret
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MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one 
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1 

where 𝑟𝑀+1
∗  is best possible 

under clairvoyant policy.

Tom Silver - Princeton University - Fall 2025 38

Objective: minimize regret



MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one 
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• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1 

where 𝑟𝑀+1
∗  is best possible 

under clairvoyant policy.
• Don’t care about 𝑟1, … , 𝑟𝑀. 
• Just want informative data.
• A.k.a. selection problem.
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MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one 
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1 

where 𝑟𝑀+1
∗  is best possible 

under clairvoyant policy.
• Don’t care about 𝑟1, … , 𝑟𝑀. 
• Just want informative data.
• A.k.a. selection problem.

Cumulative Regret

• Cumulative regret:
𝑟1

∗ + ⋯ + 𝑟𝑀
∗  − (𝑟1 + ⋯ + 𝑟𝑀).
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MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one 
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1 

where 𝑟𝑀+1
∗  is best possible 

under clairvoyant policy.
• Don’t care about 𝑟1, … , 𝑟𝑀. 
• Just want informative data.
• A.k.a. selection problem.

Cumulative Regret

• Cumulative regret:
𝑟1

∗ + ⋯ + 𝑟𝑀
∗  − (𝑟1 + ⋯ + 𝑟𝑀).

• Exploration-exploitation: at 
each step, should we select 
action believed to be best 
(exploit) or try one we’re 
uncertain about (explore)? 
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MAB: A Tale of Two Settings

Simple Regret

• After 𝑀 samples, take one 
final action and receive 𝑟𝑀+1.

• Simple regret: 𝑟𝑀+1
∗ − 𝑟𝑀+1 

where 𝑟𝑀+1
∗  is best possible 

under clairvoyant policy.
• Don’t care about 𝑟1, … , 𝑟𝑀. 
• Just want informative data.
• A.k.a. selection problem.

Cumulative Regret

• Cumulative regret:
𝑟1

∗ + ⋯ + 𝑟𝑀
∗  − (𝑟1 + ⋯ + 𝑟𝑀).

• Exploration-exploitation: at 
each step, should we select 
action believed to be best 
(exploit) or try one we’re 
uncertain about (explore)?

When would each make more sense?
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Strategies for MAB

• Most strategies maintain sample estimate of Q function:
෠𝑄 𝑠, 𝑎 =

1

|ℐ𝑎|
෍

𝑖∈ℐ𝑎

𝑟𝑖

where ℐ𝑎 is the set of step indices where action 𝑎 was selected.

𝑠 not important here, 
but will be later
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• Notation: 𝑁 𝑠, 𝑎 = |ℐ𝑎|.

𝑠 not important here, 
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Number of times we 
have tried 𝑎
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Strategies for MAB

• Most strategies maintain sample estimate of Q function:
෠𝑄 𝑠, 𝑎 =

1

|ℐ𝑎|
෍

𝑖∈ℐ𝑎

𝑟𝑖

where ℐ𝑎 is the set of step indices where action 𝑎 was selected.

• Notation: 𝑁 𝑠, 𝑎 = |ℐ𝑎|.

𝑠 not important here, 
but will be later

Number of times we 
have tried 𝑎

Why might “always select argmaxa ෠𝑄 𝑠, 𝑎 ” be 
a suboptimal strategy?
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Strategies for MAB: 𝜖-greedy

Epsilon-greedy strategy

• With probability 𝜖, select random action  (explore)
• Otherwise, select argmaxa ෠𝑄 𝑠, 𝑎    (exploit)

If there’s an action that has never been tried (𝑁 𝑠 , 𝑎 = 0), select it.
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Strategies for MAB: UCB

Upper confidence bounds (UCB)

Main idea: optimism in the face of uncertainty.

• New restaurant in town! I don’t know if it’s good, but 
optimistically, it might be fantastic! Let’s eat.

• New course offering! I don’t know if it’s good, but optimistically, 
it might be. Let’s take it!
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Why is optimism in the face of 
uncertainty a good principle?

• If your optimistic predictions are 
correct, you’ll be thrilled!

• If they’re not, you will quickly 
discover that you were wrong 
from the new data.

• Contrast with pessimism.
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Being Optimistic with Confidence Bounds

• Suppose I believe that with 95% probability, ෠𝑄(𝑠, 𝑎1) is between 
-1.25 and 4.75.

• Optimism in the face of uncertainty says: it’s plausibly possible 
that ෠𝑄(𝑠, 𝑎1) = 4.75, so I’m going to assume that it is.

Tom Silver - Princeton University - Fall 2025 49



Being Optimistic with Confidence Bounds

• Suppose I believe that with 95% probability, ෠𝑄(𝑠, 𝑎1) is between 
-1.25 and 4.75.

• Optimism in the face of uncertainty says: it’s plausibly possible 
that ෠𝑄(𝑠, 𝑎1) = 4.75, so I’m going to assume that it is.

• I also think that with 95% probability, −3.0 ≤ ෠𝑄 𝑠, 𝑎2 ≤ 5.0.

• Optimistically, ෠𝑄 𝑠, 𝑎2 > ෠𝑄 𝑠, 𝑎1 . So, I’ll choose 𝑎2!
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Recipe for Deriving UCB Algorithms
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Recipe for Deriving UCB Algorithms

• For each action 𝑎 ∈ 𝒜, define random variables 𝑋𝑎
1, … 𝑋𝑎

𝑛 where 𝑋𝑎
𝑖  

represents the reward for the 𝑖𝑡ℎ try of action 𝑎.

• Note that these 𝑋𝑎
𝑖  are i.i.d. with distribution 𝑅 𝑠, 𝑎, 𝑆′ , where 𝑆′ ∼

𝑃(𝑠′ ∣ 𝑠, 𝑎), which has mean 𝑄(𝑠, 𝑎).

• Let ෠𝑋𝑎
𝑛 =

1

𝑛
σ𝑖=1

𝑛 𝑋𝑎
𝑖 . Represents ෠𝑄(𝑠, 𝑎) after 𝑛 tries of 𝑎.

• Make some assumptions about the distribution (e.g., it is subgaussian) 
and use some concentration bounds (e.g, Chebyshev) to derive an 
inequality like... 
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Recipe for Deriving UCB Algorithms

𝑃(𝑄 𝑠, 𝑎 ≥ ෠𝑋𝑎
𝑛 +

2 log
1
𝛿

𝑛
) ≤ 𝛿 For any 𝛿 ∈ (0, 1)
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Recipe for Deriving UCB Algorithms

𝑃(𝑄 𝑠, 𝑎 ≥ ෠𝑋𝑎
𝑛 +

2 log
1
𝛿

𝑛
) ≤ 𝛿

After 𝑛 tries of action 𝑎, I can be sure, with (1 − 𝛿) probability, 
that my estimate of the value of 𝑎 is within a constant from the 
true value.

Given a desired confidence level, like (1 − 𝛿) = 0.95, the most 
optimistic plausible estimate of the true value is ෠𝑋𝑎

𝑛 +
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

For any 𝛿 ∈ (0, 1)
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Recipe for Deriving UCB Algorithms

𝑃(𝑄 𝑠, 𝑎 ≥ ෠𝑋𝑎
𝑛 +

2 log
1
𝛿

𝑛
) ≤ 𝛿

As 𝑛 gets larger, or as 
1 − 𝛿 gets larger, bound 

gets tighter.

After 𝑛 tries of action 𝑎, I can be sure, with (1 − 𝛿) probability, 
that my estimate of the value of 𝑎 is within a constant from the 
true value.

Given a desired confidence level, like (1 − 𝛿) = 0.95, the most 
optimistic plausible estimate of the true value is ෠𝑋𝑎

𝑛 +
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

For any 𝛿 ∈ (0, 1)
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Strategies for MAB: UCB

Upper confidence bounds (UCB)

Idea: construct confidence intervals for ෠𝑄, then be optimistic in the 
face of uncertainty.

At step 𝑚, select: argmaxa
෠𝑄 𝑠, 𝑎 +

𝜙 𝑚

𝑁 𝑠,𝑎
 

where 𝜙 can be several functions; often 𝜙 𝑚 = 𝑐 log(𝑚) for a 
hyperparameter 𝑐.

Intuition: as number of tries increases, shift 
from exploration to exploitation.

Note resemblance to 
concentration bounds!
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Strategies for MAB: UCB

Upper confidence bounds (UCB)

• UCB attains optimal cumulative regret (Lai & Robbins 1985) 

• It does not attain optimal simple regret (Bubeck et al. 2010)

• But it’s widely used in planning contexts nonetheless, and works 
well in practice
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Uniform Random Exploit Only Epsilon Greedy UCB

Mean Cumulative Reward 55.70 141.98 134.75 149.70

Std Cumulative Reward 22.94 44.09 37.66 36.23

Mean Final Reward 1.98 1.22 1.72 2.34

Std Final Reward 3.12 1.84 3.01 3.51
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Uniform Random Exploit Only Epsilon Greedy UCB

Mean Cumulative Reward 55.70 141.98 134.75 149.70

Std Cumulative Reward 22.94 44.09 37.66 36.23

Mean Final Reward 1.98 1.22 1.72 2.34

Std Final Reward 3.12 1.84 3.01 3.51

Lots more on Bandits:

• “Bandit Algorithms.” Lattimore & Szepesvari (2020). Free online.
• https://banditalgs.com/
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Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.

Arm 1 Arm 2
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Recursive Bandits

• Sparse sampling with 𝐻 = 1 ≈ “Uniform Random” for MAB.
• Sparse sampling with 𝐻 > 1 ≈ naïve solution to recursive bandit 

problem.
• To determine the “reward” for taking action at depth ℎ, first solve MAB 

problem at depth ℎ + 1.

• Could we recursively apply bandit approaches like UCB within 
sparse sampling?
• Sure!
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Regret in Recursive Bandits

• At the root, it’s clear that we care about simple regret, rather than 
cumulative regret. 

• However, beyond the root, the story is less clear [1].
• Each non-root state node 𝑠 needs to figure out both the best action 

to take at 𝑠, and the value 𝑉(𝑠), for use by ancestors.
• These are somewhat competing: if all I need is to check that 𝑎 is best, 

it could make sense to thoroughly check other actions, making sure 
they’re not better.

• But if what I need is 𝑄(𝑠, 𝑎), then I need more samples of 𝑎.
• For this reason, some works (e.g. [2]) advocate using one strategy 

at/near the root, and a different strategy elsewhere.
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cumulative regret. 

• However, beyond the root, the story is less clear [1].
• Each non-root state node 𝑠 needs to figure out both the best action 

to take at 𝑠, and the value 𝑉(𝑠), for use by ancestors.
• These are somewhat competing: if all I need is to check that 𝑎 is best, 

it could make sense to thoroughly check other actions, making sure 
they’re not better.

• But if what I need is 𝑄(𝑠, 𝑎), then I need more samples of 𝑎.
• For this reason, some works (e.g. [2]) advocate using one strategy 

at/near the root, and a different strategy elsewhere.
[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).
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• At the root, it’s clear that we care about simple regret, rather than 
cumulative regret. 

• However, beyond the root, the story is less clear [1].
• Each non-root state node 𝑠 needs to figure out both the best action 

to take at 𝑠, and the value 𝑉(𝑠), for use by ancestors.
• These are somewhat competing: if all I need is to check that 𝑎 is best, 

it could make sense to thoroughly check other actions, making sure 
they’re not better.

• But if what I need is 𝑉 𝑠 =  𝑄(𝑠, 𝑎), then I need more 𝑎 samples. For 
this reason, some works (e.g. [2]) advocate using one strategy at/near 
the root, and a different strategy elsewhere.
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Regret in Recursive Bandits

• At the root, it’s clear that we care about simple regret, rather than 
cumulative regret. 

• However, beyond the root, the story is less clear [1].
• Each non-root state node 𝑠 needs to figure out both the best action 

to take at 𝑠, and the value 𝑉(𝑠), for use by ancestors.
• These are somewhat competing: if all I need is to check that 𝑎 is best, 

it could make sense to thoroughly check other actions, making sure 
they’re not better.

• But if what I need is 𝑉 𝑠 =  𝑄(𝑠, 𝑎), then I need more 𝑎 samples. 
• For this reason, some works (e.g. [2]) advocate using one strategy 

at/near the root, and a different strategy elsewhere.
[1] “Simple Regret Optimization in Online Planning for Markov Decision Processes.” Feldman & Domshlak (2012).
[2] “Minimizing Simple and Cumulative Regret in Monte-Carlo Tree Search.” Pepels et al. (2014).
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Limitation of Sparse Sampling + UCB

• Even with a smarter bandits strategy, sparse sampling suffers 
from poor anytime performance
• Anytime performance: evaluation of the best policy found for any given 

computational budget (e.g., wall clock time)
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Limitation of Sparse Sampling + UCB

• Even with a smarter bandits strategy, sparse sampling suffers 
from poor anytime performance
• Anytime performance: evaluation of the best policy found for any given 

computational budget (e.g., wall clock time)

• In general, sparse sampling completely evaluates each subtree 
before returning to the parent.
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Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) 
Brings together many of the ideas we have seen:
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Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) 
Brings together many of the ideas we have seen:
1. Restricting to reachable states by building out AODAG

2. Using heuristics to evaluate leaves

3. Sparse sampling of transition model

4. MAB exploration techniques

5. Expanding AODAG gradually

One new idea: estimating heuristics with rollouts.
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Estimating Heuristics with Rollouts

• To get cheap heuristic for a state, MCTS uses rollouts.
• A rollout is a trajectory of states, actions, and rewards sampled 

from the MDP with a policy 𝜋rollout.
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• With temporal discounting applied as needed
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Estimating Heuristics with Rollouts

• To get cheap heuristic for a state, MCTS uses rollouts.
• A rollout is a trajectory of states, actions, and rewards sampled 

from the MDP with a policy 𝜋rollout.
• Estimated value is average of cumulative rollout rewards

• With temporal discounting applied as needed

• Common choice of 𝜋rollout is random action selection
• Domain-specific knowledge or machine learning can also be used

When would rollouts give good or 
bad heuristic estimates?
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.

Unlike expectimax / sparse sampling, but like RTDP, 
we’re going to maintain and update ෠𝑄 for nodes in the 
AODAG, rather than calculating them once and for 
all.
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Example AODAG during MCTS
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Example AODAG during MCTS

Important note: each gray box now includes both 
෠𝑄𝑡(𝑠, 𝑎) and 𝑁𝑡(𝑠, 𝑎) (for action nodes).

We don’t need to store anything at state nodes.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Pick the leaf as follows:
1. Start at the root
2. Select an action (using tree policy)
3. Sample a next state
4. Repeat 2-3 until a leaf is reached
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.

Pick the leaf as follows:
1. Start at the root
2. Select an action (using tree policy)
3. Sample a next state
4. Repeat 2-3 until a leaf is reached

Use MAB ideas
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and 

new child action nodes, one per possible action.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and 

new child action nodes, one per possible action.
3. Simulation: Calculate a heuristic value for the new state node 

using rollouts.
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Notation: let 𝜌 denote the 
estimated heuristic from rollouts.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and 

new child action nodes, one per possible action.
3. Simulation: Calculate a heuristic value for the new state node 

using rollouts.
But if you have a heuristic, maybe use that instead!

But, good to be admissible.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and 

new child action nodes, one per possible action.
3. Simulation: Calculate a heuristic value for the new state node 

using rollouts.
4. Backpropagation: Update ෠𝑄 and 𝑁 for the selected state and 

action and all ancestors.
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Monte Carlo Tree Search (MCTS)

MCTS starts by initializing AODAG, ෠𝑄, and 𝑁.
Then, repeat until time runs out:
1. Selection: Pick a leaf (action) node to explore.
2. Expansion: Sample a next state. Create a new state node and 

new child action nodes, one per possible action.
3. Simulation: Calculate a heuristic value for the new state node 

using rollouts.
4. Backpropagation: Update ෠𝑄 and 𝑁 for the selected state and 

action and all ancestors.
Not neural network 

backprop!
Tom Silver - Princeton University - Fall 2025 120



MCTS Backpropagation

• ෢𝑄𝑡(𝑠, 𝑎) will be the average of all cumulative rewards seen during 
planning, when starting at 𝑠 at time 𝑡 and taking 𝑎.

• And, 𝑁𝑡(𝑠, 𝑎) should be the visitation counts.

• Backpropagation: given one new trajectory, update ෠𝑄, 𝑁.
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Updating 𝑁1 𝑠′, 𝑎′ ← 1
and ෢𝑄1 𝑠′, 𝑎′ ← 𝜌.

𝑎′

𝑠

𝑎

𝑠′
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Updating 𝑁0 𝑠, 𝑎 ← 𝑁0 𝑠, 𝑎 + 1

𝑠

𝑎

𝑠′

𝑎′
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Updating 𝑁0 𝑠, 𝑎 ← 𝑁0 𝑠, 𝑎 + 1

and ෢ 𝑄0 𝑠, 𝑎 ←
𝑁0 𝑠,𝑎 −1 ෢𝑄0 𝑠,𝑎 +𝑅 𝑠,𝑎,𝑠′ +𝛾 ෢𝑄1 𝑠′, 𝑎′

𝑁0 𝑠,𝑎

𝑠

𝑎

𝑠′

Running average!

𝑎′
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Updating 𝑁0 𝑠, 𝑎 ← 𝑁0 𝑠, 𝑎 + 1

and ෢ 𝑄0 𝑠, 𝑎 ←
𝑁0 𝑠,𝑎 −1 ෢𝑄0 𝑠,𝑎 +𝑅 𝑠,𝑎,𝑠′ +𝛾 ෢𝑄1 𝑠′, 𝑎′

𝑁0 𝑠,𝑎

𝑠

𝑎

𝑠′

Running average? Why not max?
• Taking a max instead is an 

option, but less standard [1]
• As number of trajectories 

increases, and tree policy gets 
more exploit-y, it will be that 
running average ≈ max.

[1]  https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/ICML16-khandelwal.slides.pdf

𝑎′
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MCTS Summary

“A Survey of Monte Carlo Tree Search Methods.” Browne et al. (2012).

Tom Silver - Princeton University - Fall 2025 126



Tom Silver - Princeton University - Fall 2025 127



Tom Silver - Princeton University - Fall 2025 128



Tom Silver - Princeton University - Fall 2025 129



False
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False
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True
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UCT: MCTS + UCB

• Probably the most popular algorithm in the MCTS family is 
Upper Confidence Trees (UCT).

• UCT uses the exploration bonus from UCB to select actions.
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Summary

• Sparse sampling: expectimax search, but instead of full Bellman 
backups, use sampling to approximate

• Multi-armed bandits: select actions to minimize regret

• Monte Carlo Tree Search: sparse sampling + MAB exploration 
techniques + rollouts to estimate heuristics
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