Planning in Factored
Spaces

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025

Recap and Preview

Previously:
* Planning in finite “tabular” state and action spaces
» Careful treatment of uncertainty in transitions and observations
» Offline planning and online planning
Now:
 Planning in finite “factored” state and action spaces
 No more uncertainty ,
. . Our focus turns to leveraging
* Online planning only structure in the problem space

Later:
* Planning in continuous state and action spaces

Classical Planning Problem Setting

A classical planning problem is:

A finite state space §

A finite action space A

An initiable action function I: § X A = { T, F }

A transition function F:§ X A & & Deterministic! Can be partial
A cost function C: XAXs =]R:' Lower better. Could do rewards

An initial state Sg € S instead:; just a convention.
A goal function G:S - { T’ F } Equivalent to a set of states

NoubhobhE

Example: Blocks World

 States: each block is either on the Initial State
table or on some other block d

» Actions: picking or placing a block »

* Initiation: can only pick and place on BE

“clear” blocks

* Transition function: as you'd expect Goal
* Cost function: always 1 2 e eilier Bedks
« Initial state: e.g., see right e can be anywhere

» Goal function: e.g., see right

4

Tom Silver - Princeton University - Fall 2025

Definition of a Solution (Plan)

A solution 1 to a classical planning problem is a sequence of states
So, S1, ---, ST and actions ay, a4, ..., ar_4 such that

1. Each action is initiable: I(s;, a;) = True

2. Transitions are valid: T (s¢, a;) = S¢4q

3. The goal is achieved: G(s;) = True

The cost of a solution y is C(y) £ >, C(s¢, ay, Sgrq)

A solution Y™ is optimal if it minimizes costs: C(Y*) = ml/}n C(Y)

Example: Blocks World

An optimal plan

Goal

El
Table

bllal{c

Table

]

bllallc

Table

.

bllalic

Table

(on
Q
(@]

Tom Silver - Princeton University - Fall 2025

Example: Blocks World

A suboptimal plan

bllal bllal
Table Table

Tom Silver - Princeton University - Fall 2025 7

A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.

A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.

Definitions: What is this
planner?

A planner is sound if its output is guaranteed to be a solution.

A planner is complete if it is guaranteed to return an output eventually.

A sound planner is optimal if its output is guaranteed to be optimal.
Otherwise, the planner is satisficing.

A Better Approach: Graph Search

Tom Silver - Princeton University - Fall 2025

10

Graph Search

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root = Nobe(sg, 0, parent=null)
// prioRITY differs between algorithms
push root onto queue with priorITY(root)
// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty
pop node from queue
s, c = node.state, node.pathCost
// skip if we already found a better path
if bestPathCost[s] < c : continue
if G(s) : return node.extractPlan()
fora € As.t. I(s,a)
s’ = F(s,a)
¢/ =c+C(s,a,s’)
if bestPathCost[s’] < ¢’ : continue
bestPathCost[s’] = c’/
child = Nopk(s’, ¢’, parent=node)
push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 11

Goal: bon a

Table

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms
push root onto queue with priorITY(root)
// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty
pop node from queue
s, c = node.state, node.pathCost
// skip if we already found a better path
if bestPathCost[s] < c : continue
if G(s) : return node.extractPlan()
fora € As.t. I(s,a)
s’ = F(s,a)
¢/ =c+C(s,a,s’)
if bestPathCost[s’] < ¢’ : continue
bestPathCost[s’] = ¢’
child = Nopk(s’, ¢’, parent=node)
push child onto queue with prioriTY(child)

Tom Silver - Princeton University - Fall 2025 12

queue

GRAPHSEARCH(S(, A, I, F, C, G)

1 _/ priority queue of nodes

2 | initialize queue = []

3 Troot = NoODE(s(, U, parent=null)

4 // priority differs between algorithms

5 push root onto queue with prioRITY(TOO1)
6 / state — best known path cost

7 initialize bestPathCost = {sg — 0}

8 while queue is not empty

9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 13

queue

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes

initialize queue =]

root = Nobk(sg, 0, parent=null)
// PRIORITY ditters between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9

pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025

14

queue

©, 0)

For now, let’s say
priority = path
cost

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root = Nobe(sg, 0, parent=null)
// PrIORITY differs between algorithms
push root onto queue with pPrIORITY(r0Ot)
// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty
pop node from queue
s, c = node.state, node.pathCost
// skip if we already found a better path
if bestPathCost[s] < c : continue
if G(s) : return node.extractPlan()
fora € As.t. I(s,a)
s’ = F(s,a)
¢/ =c+C(s,a,s’)
if bestPathCost[s’] < ¢’ : continue
bestPathCost[s’] = c’/
child = Nopk(s’, ¢’, parent=node)
push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 15

queue

©, 0)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue 1s not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 16

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 17

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip 1f we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 18

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 19

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast. I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 20

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 21

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast. I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 22

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ = c4+ C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 23

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢ = c+ C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 24

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nope(s’, c¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 25

queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nopkg(s’, ¢/, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 26

queue

©, 1)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < ¢ : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nobg(s’, ¢/, parent=node)
20 push child onto queue with PrioriTY(child)

Tom Silver - Princeton University - Fall 2025 27

queue

©, 1)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 28

queue

O, 1) O, 1)

bestPathCost

1
| 0 L

—-1

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root =

Nobkg(sq, 0, parent=null)

1
2
3
4 // priority differs between algorithms

5 push root onto queue with prioRITY(TOO1)
6 / state — best known path cost

7 initialize bestPathCost = {sg — 0}

8 while queue is not empty

9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € As.t. I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with prioriTY(child)

Tom Silver - Princeton University - Fall 2025

29

queue

©, 1)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

—-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 30

queue

©, 1)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

a
Ao~ 0 aa

—-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 31

queue

©, 1)

bestPathCost

a
Ao~ 0 aa

Path cost is 2, which is
worse than O

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms
push root onto queue with priorITY(root)
// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty
pop node from queue
s, c = node.state, node.pathCost
// skip if we already found a better path
if bestPathCost[s] < c : continue
if G(s) : return node.extractPlan()
fora € As.t. I(s,a)
s’ = F(s,a)
¢ = c+ C(s,a,s’)
if bestPathCost[s’] < ¢’ : continue
bestPathCost[s’] = ¢’
child = Nopk(s’, ¢’, parent=node)
push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 32

queue

O, 1) O, 2)

bestPathCost

(]
_>O _>1

Place(a, c)

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root =

Nobkg(sq, 0, parent=null)

// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

pop node from queue

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with prioriTY(child)

Tom Silver - Princeton University - Fall 2025

33

queue

0, 1) ©,2) (@, 2)

bestPathCost

1
_'O =

Place(a, c)

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root =

Nobpk(sg, 0, parent=null)

1
2
3
4 // priority differs between algorithms

5 push root onto queue with prioRITY(TOO1)
6 / state — best known path cost

7 initialize bestPathCost = {sg — 0}

8 while queue is not empty

9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € As.t. I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with prioriTY(child)

Tom Silver - Princeton University - Fall 2025

34

Heuristics and Value Functions

As in MDP land, we can define value functions:

0 if G(s)
Vi(s) = Jpin s C(s,a,8") + V(s o.w,
s'=F(s,a)

“Cost-to-go”

Heuristics and Value Functions

As in MDP land, we can define value functions:

0 if G(s)
Vi(s) = Jpin s C(s,a,8") + V(s o.w,
s'=F(s,a)

A heuristic V7 (s) is an approximate value function.

Same as MDP land

Heuristics and Value Functions

As in MDP land, we can define value functions:

0 if G(s)
Vi(s) = Jpin s C(s,a,8") + V(s o.w,
s'=F(s,a)

A heuristic V7 (s) is an approximate value function.
A heuristic is admissible if it never overestimates the cost-to-go:
Forall s € 5,V (s) < V*(s).

Graph Search Variations

Algorithm Priority Function Optimal?

If costs are 1, this is breadth-first
search. Like Dijkstra’s, but returns
shortest path to goal, not shortest

paths to all states

Uniform cost search path cost Yes

Greedy best-first Good choice for fast satisficing

search (GBFS) heuristic(state) No planning
. path cost + Optimal if heuristic is admissible (never
A* search . .. Depends .
heuristic(state) overestimates cost-to-go)
Depth first search negative path cost No 2N (52 (I Ml =EiIENEt if

implemented as a special case

Where do Heuristics Come From?

1. Hand-desighed based on understanding of the problem
2. Learned from data (later in the course)

3. Automatically derived from the problem representation

Factored Classical Planning Problems

Consider a classical planning problem where:
States are factored into n Boolean features:

S={TF)"

The goal is to “activate” features {i;, ..., i;,} (for 1 < i; < n):

G(s) = s[i;] A As[i,,]

Blocks World Example

Feature
On-A-B
On-A-C
On-B-A
On-B-C
On-C-A
On-C-B
OnTable-A
OnTable-B
OnTable-C
Holding-A
Holding-B
Holding-C
HandEmpty

Value
True
False
False
False
False
False
False
True
True
False
False
False

True

Goal: bonar——)> {On-B-A}

Tom Silver - Princeton University - Fall 2025

41

Blocks World Example

Feature
On-A-B
On-A-C
On-B-A
On-B-C
On-C-A
On-C-B
OnTable-A
OnTable-B
OnTable-C
Holding-A
Holding-B
Holding-C
HandEmpty

Value
False
False
False
False
False
False
True
True
True
False
False
False

True

Goal:aonb &

bonc T

Tom Silver - Princeton University - Fall 2025

{On-A-B,
On-B-C}

42

Goal-Count: Our First Problem-Derived Heuristic

The goal-count heuristic counts the number of goal features that
are not yet activated:

Vee(s) 2 |{i : =sli] Ai € G}

Assuming all transition costs are 1,
is V- admissible?

Goal-Count Can Help!

Node Evals

25001

N
o
o
o

1500 1
1000 -

500 1

blocks: gbfs

Heuristic

blocks: astar

2500 -

N
o
o
o

1500

1000 -

Node Evals

500 1

Tom Silver - Princeton University - Fall 2025

Heuristic

44

Limitations of Goal-Count

1. Very sparse

2. Can be “misleading” Examples?

Factoring Further: Actions + Transitions

A (STRIPS / PDDL) operator has:

1. Preconditions e
2 Add effects - Fachis a set

of features

3. Delete effects

Notation: w is an operator, (2 is
the set of all operators

Pick-A-from-C:

Preconditions: {HandEmpty,
On-A-C,

Clear-A}

Add effects: {Holding-A, Clear-C}

Delete effects: {HandEmpty,

On-A-C, Clear-A}

Factored Classical Planning Problems

A factored classical planning problem is:

. A finite state space § = 2{1n} - >etofalltrue features

A finite action space A =) Actions = operators

An initiable action function (s, w) = pre(w) S s - Preconditions hold
A transition function F(s,w) = (s — del(w)) U add(w) Effects
A cost function C(s,w,s’) =1 For simplicity

An initial state s, € §

A goal function G(S) =g Cs g is another feature set

NouAs W e

Tom Silver - Princeton University - Fall 2025 47

Lifted Operators

It is often convenient to define Pick(?x, ?y):
operators with parameters:
On(?x, ?y),
Clear(?x)}

Objects can also be typed
Add effects: {Holding(?x), Clear(?y)}

Preprocessiljg: ground a!l Iif’Fed Delete effects: {HandEmpty(),
operators with all combinations of On(?x, ?y)

objects (obeying types) Clear(?x)}

A Recipe for Heuristic Generation

Original

Problem m

Use as heuristic

Relaxed
Problem

Relaxed

Repeat at every
state

Value

Relaxed
Solution

Extract solution cost

Tom Silver - Princeton University - Fall 2025

49

Delete Relaxation

Pick(?x, ?y):
Preconditions: {HandEmpty(),
Oon(?x, ?y),

Clear(?x)}

Add effects: {Holding(?x),

Clear(?y)}

Delete effects: {HandEmpty(),
On(?x, ?y)
Clear(?x)}

o

Pick(?x, ?y):

Preconditions: {HandEmpty(),
On(?x, ?y),
Clear(?x)}

Add effects: {Holding(?x),
Clear(?y)}

Delete effects: {}

Tom Silver - Princeton University - Fall 2025 50

Delete-Relax: Our Second Problem-Derived

Heuristic

The delete-relax heuristic Vy»(s) is the optimal cost of the relaxed
planning problem with initial state s.

Goal: holding(a) &
holding(b)

Tom Silver - Princeton University - Fall 2025

What is Vpr(s)?
What is V*(s)?

Is Vpr admissible?

51

Delete Relaxation Can Help!

blocks: astar

blocks: gbfs

» 2000 1 »n 2000 1
] (C
> >
Ll L
[Q
g g
= 1000 > 1000
53 H+

0 == 0 -

+ Q¥ >
ép 65. ép
be> S be>
Heuristic

But these plots are extremely misleading. Why?

Tom Silver - Princeton University - Fall 2025

oé' -;\\?}
(o) O
C S
>
&)
O
Heuristic

52

More Revealing Plots

Solving delete-relaxed
problems exactly is formally
hard (NP-complete)

blocks: astar

blocks: gbfs
— 300
3 20- @
Q Q
£ 151 £ 200
= =
210+ 3
= < 100
L 54 0
o o
0- N 0.
&
QS Je
;ﬁb é§
>
§
Heuristic

Tom Silver - Princeton University - Fall 2025

X
000
Jo
>
o
S

Heuristic

53

hFF: A Better Delete Relaxation Heuristic

Construct a non-optimal relaxed plan in a particular way:

Forward pass:

1. Imagine we could execute all initiable actions simultaneously
2. Aggregate the next states into superset of all active features
3. Repeat (1) and (2) until convergence (or goal is active)

Backward pass:

1. Build a relaxed plan by selecting “necessary” actions

Feature 1
(active)

Feature 2
(active)

Feature 3
(inactive)

Tom Silver - Princeton University - Fall 2025

55

O®O0O00®®

Tom Silver - Princeton University - Fall 2025

56

Operators

v

U b g

v

1

v

o

Tom Silver - Princeton University - Fall 2025

57

Operators

X

U b g

v

I

v

v

Iy

o
:

Tom Silver - Princeton University - Fall 2025

58

200909 m

m,_&% m

605006

Forward Pass Complete

@ @ @
o o |le
Q
—O-

G

-0

i~

@@&@@@

——————— OIIIIIII_

rTTTTTT Qoo

rTTTTTT Qoo

@ @ @
o o |le
Q

@
—O-
G
-0

@ @ @
o o |le
Q

@
—O-
G
-0

anes

-1
~l-
-

~(0)

Sevis i)
0060060

W oL 1 B
Y Yetelel Yo

anes

-1
~l-
-

~(0)

Sevie i)
0060040

W oL 1 B
Y Yetelel Yo

Frank
XL
0060040

-1
~l-
-

~(0)

—

— -
(-
3

S

x

660 00dc

RGS0R
200609 ?
08600 0e

56000éc

Relaxed
Plan

@ ® _[©®

Terminology:

Relaxed
Planning
Graph

—) Q__.

Also useful for
testing reachability

Also useful for
pruning actions

@

@

s

@

i

A

@@é

Q,

g
a Olg

000

-®—8

b6

o

a O
@

O

56

&

S

Tom Silver - Princeton University - Fall 2025

73

hFF Can Really Help!

blocks: astar

(00)

(o))

=~

Planning Time (s)

N

o

\Q'
o“(\

Jo

>
O

S

Heuristic

Tom Silver - Princeton University - Fall 2025

74

	Slide 1: Planning in Factored Spaces
	Slide 2: Recap and Preview
	Slide 3: Classical Planning Problem Setting
	Slide 4: Example: Blocks World
	Slide 5: Definition of a Solution (Plan)
	Slide 6: Example: Blocks World
	Slide 7: Example: Blocks World
	Slide 8: A Stupidest Possible Algorithm
	Slide 9: A Stupidest Possible Algorithm
	Slide 10: A Better Approach: Graph Search
	Slide 11: Graph Search
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Heuristics and Value Functions
	Slide 36: Heuristics and Value Functions
	Slide 37: Heuristics and Value Functions
	Slide 38: Graph Search Variations
	Slide 39: Where do Heuristics Come From?
	Slide 40: Factored Classical Planning Problems
	Slide 41: Blocks World Example
	Slide 42: Blocks World Example
	Slide 43: Goal-Count: Our First Problem-Derived Heuristic
	Slide 44: Goal-Count Can Help!
	Slide 45: Limitations of Goal-Count
	Slide 46: Factoring Further: Actions + Transitions
	Slide 47: Factored Classical Planning Problems
	Slide 48: Lifted Operators
	Slide 49: A Recipe for Heuristic Generation
	Slide 50: Delete Relaxation
	Slide 51: Delete-Relax: Our Second Problem-Derived Heuristic
	Slide 52: Delete Relaxation Can Help!
	Slide 53: More Revealing Plots
	Slide 54: hFF: A Better Delete Relaxation Heuristic
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74: hFF Can Really Help!

