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Recap and Preview
Previously:
• Planning in finite “tabular” state and action spaces
• Careful treatment of uncertainty in transitions and observations
• Offline planning and online planning
Now:
• Planning in finite “factored” state and action spaces
• No more uncertainty
• Online planning only
Later:
• Planning in continuous state and action spaces
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Our focus turns to leveraging 
structure in the problem space



Classical Planning Problem Setting

A classical planning problem is:

1. A finite state space 𝒮
2. A finite action space 𝒜
3. An initiable action function 𝐼: 𝒮 × 𝒜 → { T, F }

4. A transition function 𝐹: 𝒮 × 𝒜 → 𝒮

5. A cost function 𝐶: 𝒮 × 𝒜 × 𝒮 → ℝ≥0

6. An initial state 𝑠0 ∈ 𝒮

7. A goal function 𝐺: 𝒮 → { T, F } 
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Deterministic! Can be partial

Lower better. Could do rewards 
instead; just a convention.

Equivalent to a set of states



Example: Blocks World
• States: each block is either on the 

table or on some other block
• Actions: picking or placing a block
• Initiation: can only pick and place on 

“clear” blocks
• Transition function: as you’d expect
• Cost function: always 1
• Initial state: e.g., see right
• Goal function: e.g., see right
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Definition of a Solution (Plan)

A solution 𝜓 to a classical planning problem is a sequence of states 
𝑠0, 𝑠1, … , 𝑠𝑇 and actions 𝑎0, 𝑎1, … , 𝑎𝑇−1 such that

1. Each action is initiable: 𝐼(𝑠𝑡 , 𝑎𝑡) = True

2. Transitions are valid: 𝑇(𝑠𝑡 , 𝑎𝑡) = s𝑡+1

3. The goal is achieved: 𝐺 𝑠𝑇 = True

The cost of a solution 𝜓 is 𝐶 𝜓 ≜ σ𝑡 𝐶 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1

A solution 𝜓∗ is optimal if it minimizes costs: 𝐶 𝜓∗ =  min
𝜓

𝐶(𝜓)
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Example: Blocks World
An optimal plan
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Example: Blocks World
A suboptimal plan
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A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.
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A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.
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Definitions:

A planner is sound if its output is guaranteed to be a solution.

A planner is complete if it is guaranteed to return an output eventually.

A sound planner is optimal if its output is guaranteed to be optimal. 
Otherwise, the planner is satisficing.

What is this 
planner?



A Better Approach: Graph Search
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Graph Search
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queue



Tom Silver - Princeton University - Fall 2025 14

queue

Table
b
a

c



Tom Silver - Princeton University - Fall 2025 15

queue
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For now, let’s say 
priority = path 

cost
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Heuristics and Value Functions

As in MDP land, we can define value functions:

𝑉∗ 𝑠 =  ൞

 0 if 𝐺(𝑠) 

min
𝑎∶𝐼(𝑠,𝑎)

𝑠′=𝐹 𝑠,𝑎

𝐶 𝑠, 𝑎, 𝑠′ +  𝑉∗ 𝑠′  o. w.  
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“Cost-to-go”



Heuristics and Value Functions

As in MDP land, we can define value functions:

𝑉∗ 𝑠 =  ൞

 0 if 𝐺(𝑠) 

min
𝑎∶𝐼(𝑠,𝑎)

𝑠′=𝐹 𝑠,𝑎

𝐶 𝑠, 𝑎, 𝑠′ +  𝑉∗ 𝑠′  o. w.  

A heuristic ෠𝑉 𝑠  is an approximate value function. 
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Same as MDP land



Heuristics and Value Functions

As in MDP land, we can define value functions:

𝑉∗ 𝑠 =  ൞

 0 if 𝐺(𝑠) 

min
𝑎∶𝐼(𝑠,𝑎)

𝑠′=𝐹 𝑠,𝑎

𝐶 𝑠, 𝑎, 𝑠′ +  𝑉∗ 𝑠′  o. w.  

A heuristic ෠𝑉 𝑠  is an approximate value function. 
A heuristic is admissible if it never overestimates the cost-to-go:

For all 𝑠 ∈ 𝒮, ෠𝑉 𝑠 ≤ 𝑉∗(𝑠).
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Graph Search Variations
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Algorithm Priority Function Optimal? Notes

Uniform cost search path cost Yes

If costs are 1, this is breadth-first 
search. Like Dijkstra’s, but returns 
shortest path to goal, not shortest 

paths to all states

Greedy best-first 
search (GBFS) heuristic(state) No

Good choice for fast satisficing 
planning

A* search
path cost + 

heuristic(state) Depends
Optimal if heuristic is admissible (never 

overestimates cost-to-go)

Depth first search negative path cost No
Can be more memory-efficient if 

implemented as a special case



Where do Heuristics Come From?

1. Hand-designed based on understanding of the problem

2. Learned from data (later in the course)

3. Automatically derived from the problem representation
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Factored Classical Planning Problems

Consider a classical planning problem where:

States are factored into 𝑛 Boolean features:

𝒮 =  { T, F }𝑛

The goal is to “activate” features {𝑖1, … , 𝑖𝑚} (for 1 ≤ 𝑖𝑗 ≤ 𝑛):

𝐺 𝑠 = 𝑠[𝑖1]  ∧ ⋯ ∧ 𝑠[𝑖𝑚]
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Blocks World Example
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Goal: b on a {On-B-A}



Blocks World Example

Tom Silver - Princeton University - Fall 2025 42

Table

b ac

Feature Value

On-A-B False

On-A-C False

On-B-A False

On-B-C False

On-C-A False

On-C-B False

OnTable-A True

OnTable-B True

OnTable-C True

Holding-A False

Holding-B False

Holding-C False

HandEmpty True

Goal: a on b &
b on c

{On-A-B,
 On-B-C}



Goal-Count: Our First Problem-Derived Heuristic

The goal-count heuristic counts the number of goal features that 
are not yet activated:

𝑉𝐺𝐶 𝑠 ≜ |{𝑖 ∶ ¬𝑠 𝑖 ∧ 𝑖 ∈ 𝐺}|
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Assuming all transition costs are 1, 
is 𝑉𝐺𝐶  admissible?



Goal-Count Can Help!
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Limitations of Goal-Count

1. Very sparse

2. Can be “misleading”
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Examples?



Factoring Further: Actions + Transitions

A (STRIPS / PDDL) operator has:

1. Preconditions
2. Add effects
3. Delete effects

Notation: 𝜔 is an operator, 𝛺 is 
the set of all operators
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Each is a set 
of features

Pick-A-from-C:

Preconditions: {HandEmpty,
                                    On-A-C, 
Clear-A}

Add effects: {Holding-A, Clear-C}

Delete effects: {HandEmpty,
        On-A-C, Clear-A}



Factored Classical Planning Problems

A factored classical planning problem is:

1. A finite state space 𝒮 = 2 1,…,𝑛

2. A finite action space 𝒜 = 𝛺

3. An initiable action function 𝐼 𝑠, 𝜔 = pre 𝜔 ⊆ 𝑠

4. A transition function 𝐹 𝑠, 𝜔 = s − del 𝜔 ∪ add(𝜔)

5. A cost function 𝐶 𝑠, 𝜔, 𝑠′ = 1

6. An initial state 𝑠0 ∈ 𝒮

7. A goal function 𝐺 𝑠 = g ⊆ 𝑠
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Set of all true features

Actions = operators

Preconditions hold

Effects

For simplicity

g is another feature set



Lifted Operators

It is often convenient to define 
operators with parameters: 
placeholders for objects

Objects can also be typed

Preprocessing: ground all lifted 
operators with all combinations of 
objects (obeying types)
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Pick(?x, ?y):

Preconditions: {HandEmpty(),
                                    On(?x, ?y),
       Clear(?x)}

Add effects: {Holding(?x), Clear(?y)}

Delete effects: {HandEmpty(),
        On(?x, ?y)
       Clear(?x)}



A Recipe for Heuristic Generation
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Original 
Problem

Relaxed 
Problem

Relax Plan
Relaxed 
Solution

Relaxed 
Value

Extract solution costUse as heuristic

Repeat at every 
state



Delete Relaxation
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Pick(?x, ?y):

Preconditions: {HandEmpty(),
                                    On(?x, ?y),
       Clear(?x)}

Add effects: {Holding(?x),  
               Clear(?y)}

Delete effects: {HandEmpty(),
        On(?x, ?y)
       Clear(?x)}

Relax

Pick(?x, ?y):

Preconditions: {HandEmpty(),
                                    On(?x, ?y),
       Clear(?x)}

Add effects: {Holding(?x),  
               Clear(?y)}

Delete effects: {}



Delete-Relax: Our Second Problem-Derived 
Heuristic

The delete-relax heuristic 𝑉𝐷𝑅 𝑠  is the optimal cost of the relaxed 
planning problem with initial state 𝑠.
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Table

b ac
Goal: holding(a) & 

holding(b)

What is 𝑉𝐷𝑅 𝑠 ? 
What is 𝑉∗ 𝑠 ? 

Is 𝑉𝐷𝑅 admissible?



Delete Relaxation Can Help!
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But these plots are extremely misleading. Why?



More Revealing Plots
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Solving delete-relaxed 
problems exactly is formally 

hard (NP-complete)



hFF: A Better Delete Relaxation Heuristic

Construct a non-optimal relaxed plan in a particular way:

Forward pass:
1. Imagine we could execute all initiable actions simultaneously
2. Aggregate the next states into superset of all active features
3. Repeat (1) and (2) until convergence (or goal is active)

Backward pass:
1. Build a relaxed plan by selecting “necessary” actions
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𝑉ℎ𝐹𝐹 = 4
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★Terminology:
Relaxed
Planning
Graph

Also useful for 
testing reachability

Also useful for 
pruning actions



hFF Can Really Help!
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