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Recap and Preview

Previously:
* Planning in finite “tabular” state and action spaces
» Careful treatment of uncertainty in transitions and observations
» Offline planning and online planning
Now:
 Planning in finite “factored” state and action spaces
 No more uncertainty ,
. . Our focus turns to leveraging
* Online planning only structure in the problem space

Later:
* Planning in continuous state and action spaces




Classical Planning Problem Setting

A classical planning problem is:

A finite state space §

A finite action space A

An initiable action function I: § X A = { T, F }

A transition function F:§ X A & &  Deterministic! Can be partial
A cost function C: XAXs = ]R:' Lower better. Could do rewards

An initial state Sg € S instead:; just a convention.
A goal function G:S - { T’ F } Equivalent to a set of states

NoubhobhE



Example: Blocks World

 States: each block is either on the Initial State
table or on some other block d

» Actions: picking or placing a block »

* Initiation: can only pick and place on BE

“clear” blocks

* Transition function: as you'd expect Goal
* Cost function: always 1 2 e eilier Bedks
« Initial state: e.g., see right e can be anywhere

» Goal function: e.g., see right

4
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Definition of a Solution (Plan)

A solution 1 to a classical planning problem is a sequence of states
So, S1, ---, ST and actions ay, a4, ..., ar_4 such that

1. Each action is initiable: I(s;, a;) = True

2. Transitions are valid: T (s¢, a;) = S¢4q

3. The goal is achieved: G(s;) = True

The cost of a solution y is C(y) £ >, C(s¢, ay, Sgrq)

A solution Y™ is optimal if it minimizes costs: C(Y*) = ml/}n C(Y)



Example: Blocks World

An optimal plan

Goal

El
Table

bllal{c

Table

]

bllallc

Table
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Table
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Example: Blocks World

A suboptimal plan

bllal bllal
Table Table
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A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.



A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.

Definitions: What is this
planner?

A planner is sound if its output is guaranteed to be a solution.

A planner is complete if it is guaranteed to return an output eventually.

A sound planner is optimal if its output is guaranteed to be optimal.
Otherwise, the planner is satisficing.




A Better Approach: Graph Search
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Graph Search

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root = Nobe(sg, 0, parent=null)
// prioRITY differs between algorithms
push root onto queue with priorITY(root)
// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty
pop node from queue
s, c = node.state, node.pathCost
// skip if we already found a better path
if bestPathCost[s] < c : continue
if G(s) : return node.extractPlan()
fora € As.t. I(s,a)
s’ = F(s,a)
¢/ =c+C(s,a,s’)
if bestPathCost[s’] < ¢’ : continue
bestPathCost[s’] = c’/
child = Nopk(s’, ¢’, parent=node)
push child onto queue with priorITY(Child)
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Goal: bon a

Table

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms
push root onto queue with priorITY(root)
// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty
pop node from queue
s, c = node.state, node.pathCost
// skip if we already found a better path
if bestPathCost[s] < c : continue
if G(s) : return node.extractPlan()
fora € As.t. I(s,a)
s’ = F(s,a)
¢/ =c+C(s,a,s’)
if bestPathCost[s’] < ¢’ : continue
bestPathCost[s’] = ¢’
child = Nopk(s’, ¢’, parent=node)
push child onto queue with prioriTY(child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

1 _/ priority queue of nodes

2 | initialize queue = []

3 Troot = NoODE(s(, U, parent=null)

4 // priority differs between algorithms

5 push root onto queue with prioRITY(TOO1)
6 / state — best known path cost

7 initialize bestPathCost = {sg — 0}

8 while queue is not empty

9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes

initialize queue = ]

root = Nobk(sg, 0, parent=null)
// PRIORITY ditters between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9

pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

©, 0)

For now, let’s say
priority = path
cost

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root = Nobe(sg, 0, parent=null)
// PrIORITY differs between algorithms
push root onto queue with pPrIORITY(r0Ot)
// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty
pop node from queue
s, c = node.state, node.pathCost
// skip if we already found a better path
if bestPathCost[s] < c : continue
if G(s) : return node.extractPlan()
fora € As.t. I(s,a)
s’ = F(s,a)
¢/ =c+C(s,a,s’)
if bestPathCost[s’] < ¢’ : continue
bestPathCost[s’] = c’/
child = Nopk(s’, ¢’, parent=node)
push child onto queue with priorITY(Child)
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queue

©, 0)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue 1s not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip 1f we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast. I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)

Tom Silver - Princeton University - Fall 2025 20



queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast. I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ = c4+ C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

_>O

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢ = c+ C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nope(s’, c¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nopkg(s’, ¢/, parent=node)
20 push child onto queue with priorITY(Child)
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queue

©, 1)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < ¢ : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’] = ¢’

19 child = Nobg(s’, ¢/, parent=node)
20 push child onto queue with PrioriTY(child)
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queue

©, 1)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

O, 1) O, 1)

bestPathCost

1
| 0 L

—-1

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root =

Nobkg(sq, 0, parent=null)

1
2
3
4 // priority differs between algorithms

5 push root onto queue with prioRITY(TOO1)
6 / state — best known path cost

7 initialize bestPathCost = {sg — 0}

8 while queue is not empty

9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € As.t. I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with prioriTY(child)
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queue

©, 1)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

1
| 0 L

—-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

©, 1)

GRAPHSEARCH(S(, A, I, F, C, G)

bestPathCost

a
Ao~ 0 aa

—-1

// priority queue of nodes

initialize queue = []

root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with priorITY(Child)
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queue

©, 1)

bestPathCost

a
Ao~ 0 aa

Path cost is 2, which is
worse than O

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root = Nobk(sg, 0, parent=null)
// prioRITY differs between algorithms
push root onto queue with priorITY(root)
// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty
pop node from queue
s, c = node.state, node.pathCost
// skip if we already found a better path
if bestPathCost[s] < c : continue
if G(s) : return node.extractPlan()
fora € As.t. I(s,a)
s’ = F(s,a)
¢ = c+ C(s,a,s’)
if bestPathCost[s’] < ¢’ : continue
bestPathCost[s’] = ¢’
child = Nopk(s’, ¢’, parent=node)
push child onto queue with priorITY(Child)
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queue

O, 1) O, 2)

bestPathCost

(]
_>O _>1

Place(a, c)

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root =

Nobkg(sq, 0, parent=null)

// prioRITY differs between algorithms

// state — best known path cost
initialize bestPathCost = {sg + 0}
while queue is not empty

pop node from queue

1
2
3
4
5 push root onto queue with prioRITY(TOO1)
6
7
8
9

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € Ast I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with prioriTY(child)
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queue

0, 1) ©,2) (@, 2)

bestPathCost

1
_'O =

Place(a, c)

GRAPHSEARCH(S(, A, I, F, C, G)

// priority queue of nodes
initialize queue = []
root =

Nobpk(sg, 0, parent=null)

1
2
3
4 // priority differs between algorithms

5 push root onto queue with prioRITY(TOO1)
6 / state — best known path cost

7 initialize bestPathCost = {sg — 0}

8 while queue is not empty

9 pop node from queue

10 s, c = node.state, node.pathCost

11 // skip if we already found a better path

12 if bestPathCost[s] < c : continue

13 if G(s) : return node.extractPlan()

14 fora € As.t. I(s,a)

15 s’ = F(s,a)

16 ¢/ =c+C(s,a,s’)

17 if bestPathCost[s’] < ¢’ : continue
18 bestPathCost[s’'] = ¢’

19 child = Nopk(s’, ¢’, parent=node)
20 push child onto queue with prioriTY(child)
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Heuristics and Value Functions

As in MDP land, we can define value functions:

0 if G(s)
Vi(s) = Jpin s C(s,a,8") + V(s o.w,
s'=F(s,a)

“Cost-to-go”



Heuristics and Value Functions

As in MDP land, we can define value functions:

0 if G(s)
Vi(s) = Jpin s C(s,a,8") + V(s o.w,
s'=F(s,a)

A heuristic V7 (s) is an approximate value function.

Same as MDP land



Heuristics and Value Functions

As in MDP land, we can define value functions:

0 if G(s)
Vi(s) = Jpin s C(s,a,8") + V(s o.w,
s'=F(s,a)

A heuristic V7 (s) is an approximate value function.
A heuristic is admissible if it never overestimates the cost-to-go:
Forall s € 5,V (s) < V*(s).



Graph Search Variations

Algorithm Priority Function Optimal?

If costs are 1, this is breadth-first
search. Like Dijkstra’s, but returns
shortest path to goal, not shortest

paths to all states

Uniform cost search path cost Yes

Greedy best-first Good choice for fast satisficing

search (GBFS) heuristic(state) No planning
. path cost + Optimal if heuristic is admissible (never
A* search . .. Depends .
heuristic(state) overestimates cost-to-go)
Depth first search negative path cost No 2N (52 (I Ml =EiIENEt if

implemented as a special case



Where do Heuristics Come From?

1. Hand-desighed based on understanding of the problem
2. Learned from data (later in the course)

3. Automatically derived from the problem representation



Factored Classical Planning Problems

Consider a classical planning problem where:
States are factored into n Boolean features:

S={TF)"

The goal is to “activate” features {i;, ..., i;,} (for 1 < i; < n):

G(s) = s[i;] A As[i,,]



Blocks World Example

Feature
On-A-B
On-A-C
On-B-A
On-B-C
On-C-A
On-C-B
OnTable-A
OnTable-B
OnTable-C
Holding-A
Holding-B
Holding-C
HandEmpty

Value
True
False
False
False
False
False
False
True
True
False
False
False

True

Goal: bonar——)> {On-B-A}

Tom Silver - Princeton University - Fall 2025

41



Blocks World Example

Feature
On-A-B
On-A-C
On-B-A
On-B-C
On-C-A
On-C-B
OnTable-A
OnTable-B
OnTable-C
Holding-A
Holding-B
Holding-C
HandEmpty

Value
False
False
False
False
False
False
True
True
True
False
False
False

True

Goal:aonb &

bonc T

Tom Silver - Princeton University - Fall 2025
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Goal-Count: Our First Problem-Derived Heuristic

The goal-count heuristic counts the number of goal features that
are not yet activated:

Vee(s) 2 |{i : =sli] Ai € G}

Assuming all transition costs are 1,
is V- admissible?



Goal-Count Can Help!

# Node Evals

25001

N
o
o
o

1500 1
1000 -

500 1

blocks: gbfs

Heuristic

blocks: astar

2500 -

N
o
o
o

1500

1000 -

# Node Evals

500 1
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Limitations of Goal-Count

1. Very sparse

2. Can be “misleading” Examples?



Factoring Further: Actions + Transitions

A (STRIPS / PDDL) operator has:

1. Preconditions e
2  Add effects - Fachis a set

of features

3. Delete effects

Notation: w is an operator, (2 is
the set of all operators

Pick-A-from-C:

Preconditions: {HandEmpty,
On-A-C,

Clear-A}

Add effects: {Holding-A, Clear-C}

Delete effects: {HandEmpty,

On-A-C, Clear-A}




Factored Classical Planning Problems

A factored classical planning problem is:

. A finite state space § = 2{1n} - >etofalltrue features

A finite action space A = ) Actions = operators

An initiable action function (s, w) = pre(w) S s - Preconditions hold
A transition function F(s,w) = (s — del(w)) U add(w)  Effects
A cost function C(s,w,s’) =1 For simplicity

An initial state s, € §

A goal function G(S) =g Cs g is another feature set

NouAs W e
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Lifted Operators

It is often convenient to define Pick(?x, ?y):
operators with parameters:
On(?x, ?y),
Clear(?x)}

Objects can also be typed
Add effects: {Holding(?x), Clear(?y)}

Preprocessiljg: ground a!l Iif’Fed Delete effects: {HandEmpty(),
operators with all combinations of On(?x, ?y)

objects (obeying types) Clear(?x)}




A Recipe for Heuristic Generation

Original

Problem m

Use as heuristic

Relaxed
Problem

Relaxed

Repeat at every
state

Value

Relaxed
Solution

Extract solution cost
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Delete Relaxation

Pick(?x, ?y):
Preconditions: {HandEmpty(),
Oon(?x, ?y),

Clear(?x)}

Add effects: {Holding(?x),

Clear(?y)}

Delete effects: {HandEmpty(),
On(?x, ?y)
Clear(?x)}

o

Pick(?x, ?y):

Preconditions: {HandEmpty(),
On(?x, ?y),
Clear(?x)}

Add effects: {Holding(?x),
Clear(?y)}

Delete effects: {}

Tom Silver - Princeton University - Fall 2025 50




Delete-Relax: Our Second Problem-Derived

Heuristic

The delete-relax heuristic Vy»(s) is the optimal cost of the relaxed
planning problem with initial state s.

Goal: holding(a) &
holding(b)

Tom Silver - Princeton University - Fall 2025
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Is Vpr admissible?
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Delete Relaxation Can Help!

blocks: astar

blocks: gbfs

» 2000 1 »n 2000 1
] (C
> >
Ll L
[ Q
g g
= 1000 > 1000
53 H+

0 == 0 -

+ Q¥ >
ép 65. ép
be> S be>
Heuristic

But these plots are extremely misleading. Why?
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More Revealing Plots

Solving delete-relaxed
problems exactly is formally
hard (NP-complete)

blocks: astar

blocks: gbfs
— 300
3 20- @
Q Q
£ 151 £ 200
= =
210+ 3
= < 100
L 54 0
o o
0- N 0.
&
QS Je
;ﬁb é§
>
§
Heuristic
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hFF: A Better Delete Relaxation Heuristic

Construct a non-optimal relaxed plan in a particular way:

Forward pass:

1. Imagine we could execute all initiable actions simultaneously
2. Aggregate the next states into superset of all active features
3. Repeat (1) and (2) until convergence (or goal is active)

Backward pass:

1. Build a relaxed plan by selecting “necessary” actions



Feature 1
(active)

Feature 2
(active)

Feature 3
(inactive)

_________
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Operators

v

U b g

v

1

v

o
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Operators

X

U b g

v

I

v

v

Iy

o
:
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Forward Pass Complete
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Terminology:

Relaxed
Planning
Graph

—) Q__.

Also useful for
testing reachability

Also useful for
pruning actions
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hFF Can Really Help!

blocks: astar

(00)

(o))

=~

Planning Time (s)

N

o

\Q'
o“(\

Jo

>
O

S

Heuristic
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