
Planning in Factored
Spaces

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025

Recap and Preview
Previously:
• Planning in finite “tabular” state and action spaces
• Careful treatment of uncertainty in transitions and observations
• Offline planning and online planning
Now:
• Planning in finite “factored” state and action spaces
• No more uncertainty
• Online planning only
Later:
• Planning in continuous state and action spaces

Tom Silver - Princeton University - Fall 2025 2

Our focus turns to leveraging
structure in the problem space

Classical Planning Problem Setting

A classical planning problem is:

1. A finite state space 𝒮
2. A finite action space 𝒜
3. An initiable action function 𝐼: 𝒮 × 𝒜 → { T, F }

4. A transition function 𝐹: 𝒮 × 𝒜 → 𝒮

5. A cost function 𝐶: 𝒮 × 𝒜 × 𝒮 → ℝ≥0

6. An initial state 𝑠0 ∈ 𝒮

7. A goal function 𝐺: 𝒮 → { T, F }

Tom Silver - Princeton University - Fall 2025 3

Deterministic! Can be partial

Lower better. Could do rewards
instead; just a convention.

Equivalent to a set of states

Example: Blocks World
• States: each block is either on the

table or on some other block
• Actions: picking or placing a block
• Initiation: can only pick and place on

“clear” blocks
• Transition function: as you’d expect
• Cost function: always 1
• Initial state: e.g., see right
• Goal function: e.g., see right

Tom Silver - Princeton University - Fall 2025 4

Table

b

a

c f

e

d

Initial State

Table

a

Goal

The other blocks
can be anywhere

e

Definition of a Solution (Plan)

A solution 𝜓 to a classical planning problem is a sequence of states
𝑠0, 𝑠1, … , 𝑠𝑇 and actions 𝑎0, 𝑎1, … , 𝑎𝑇−1 such that

1. Each action is initiable: 𝐼(𝑠𝑡 , 𝑎𝑡) = True

2. Transitions are valid: 𝑇(𝑠𝑡 , 𝑎𝑡) = s𝑡+1

3. The goal is achieved: 𝐺 𝑠𝑇 = True

The cost of a solution 𝜓 is 𝐶 𝜓 ≜ σ𝑡 𝐶 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1

A solution 𝜓∗ is optimal if it minimizes costs: 𝐶 𝜓∗ = min
𝜓

𝐶(𝜓)

Tom Silver - Princeton University - Fall 2025 5

Example: Blocks World
An optimal plan

Tom Silver - Princeton University - Fall 2025 6

Table
b
a

c f
e
d

Table
b

a

c f
e
d

Table
b a c f

e
d

Table
a

Goal

e

Table
b a c f

e

d

Table
b a c f

ed

Table
b a c f

e

d

Table
b a c f

ed

Example: Blocks World
A suboptimal plan

Tom Silver - Princeton University - Fall 2025 7

Table
b
a

c f
e
d

Table
b

a

c f
e
d

Table
b a c f

e
d

Table
a

Goal

e

Table
b a c f

e

d

Table
b a c f

ed

Table
b a c f

e
d

Table
b a c f

ed

Table
b a c f

e

d

Table
b a c f

ed

A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.

Tom Silver - Princeton University - Fall 2025 8

A Stupidest Possible Algorithm

Randomly sample applicable actions until the goal is reached.

Tom Silver - Princeton University - Fall 2025 9

Definitions:

A planner is sound if its output is guaranteed to be a solution.

A planner is complete if it is guaranteed to return an output eventually.

A sound planner is optimal if its output is guaranteed to be optimal.
Otherwise, the planner is satisficing.

What is this
planner?

A Better Approach: Graph Search

Tom Silver - Princeton University - Fall 2025 10

Table
b
a

c f
e
d

Table
b

a

c f
e
d

Table
b
a

c

f
e
d

Table
b
a

c f
e

d

Pick(c)

Graph Search

Tom Silver - Princeton University - Fall 2025 11

Tom Silver - Princeton University - Fall 2025 12

Table

b
a

c

Goal: b on a

Tom Silver - Princeton University - Fall 2025 13

queue

Tom Silver - Princeton University - Fall 2025 14

queue

Table
b
a

c

Tom Silver - Princeton University - Fall 2025 15

queue

(, 0)

For now, let’s say
priority = path

cost

Tom Silver - Princeton University - Fall 2025 16

queue

(, 0)

bestPathCost

Table

b

a

c 0

Tom Silver - Princeton University - Fall 2025 17

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Tom Silver - Princeton University - Fall 2025 18

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Tom Silver - Princeton University - Fall 2025 19

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Tom Silver - Princeton University - Fall 2025 20

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Tom Silver - Princeton University - Fall 2025 21

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Tom Silver - Princeton University - Fall 2025 22

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Table
b

a

c

Tom Silver - Princeton University - Fall 2025 23

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Table
b

a

c

Tom Silver - Princeton University - Fall 2025 24

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Table
b

a

c

Tom Silver - Princeton University - Fall 2025 25

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Table
b

a

c

Table

b

a

c 1

Tom Silver - Princeton University - Fall 2025 26

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Table
b

a

c

Table

b

a

c 1

Tom Silver - Princeton University - Fall 2025 27

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Table
b

a

c

Table

b

a

c 1

(, 1)

Tom Silver - Princeton University - Fall 2025 28

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Table
b

a

c

Table

b

a

c 1

(, 1)

Tom Silver - Princeton University - Fall 2025 29

queue

bestPathCost

Table

b

a

c 0

Table
b
a

c

Table
b

a

c

Table

b

a

c 1

(, 1)

Table
b
a

c

(, 1)

Table

b

a

c

1

Tom Silver - Princeton University - Fall 2025 30

queue

bestPathCost

Table

b

a

c 0

Table
b

a

c

Table

b

a

c 1

(, 1)

Table

b

a

c

1

Tom Silver - Princeton University - Fall 2025 31

queue

bestPathCost

Table

b

a

c 0

Table
b

a

c

Table

b

a

c 1

(, 1)

Table

b

a

c

1

Table
b
a

c

Tom Silver - Princeton University - Fall 2025 32

queue

bestPathCost

Table

b

a

c 0

Table
b

a

c

Table

b

a

c 1

(, 1)

Table

b

a

c

1

Table
b
a

c Path cost is 2, which is
worse than 0

Tom Silver - Princeton University - Fall 2025 33

queue

bestPathCost

Table

b

a

c 0

Table
b

a

c

Table

b

a

c 1

(, 1)

Table

b

a

c

1

(, 2)

Table

b

a

c 2

Place(a, c)

Table
b

a
c

Tom Silver - Princeton University - Fall 2025 34

queue

bestPathCost

Table

b

a

c 0

Table
b

a

c

Table

b

a

c 1

(, 1)

Table

b

a

c

1

Place(a, c)

Table
b

a
c

(, 2)

Table

b

a

c 2

Table
b ac

Table

b ac

(, 2)

Heuristics and Value Functions

As in MDP land, we can define value functions:

𝑉∗ 𝑠 = ൞

 0 if 𝐺(𝑠)

min
𝑎∶𝐼(𝑠,𝑎)

𝑠′=𝐹 𝑠,𝑎

𝐶 𝑠, 𝑎, 𝑠′ + 𝑉∗ 𝑠′ o. w.

Tom Silver - Princeton University - Fall 2025 35

“Cost-to-go”

Heuristics and Value Functions

As in MDP land, we can define value functions:

𝑉∗ 𝑠 = ൞

 0 if 𝐺(𝑠)

min
𝑎∶𝐼(𝑠,𝑎)

𝑠′=𝐹 𝑠,𝑎

𝐶 𝑠, 𝑎, 𝑠′ + 𝑉∗ 𝑠′ o. w.

A heuristic ෠𝑉 𝑠 is an approximate value function.

Tom Silver - Princeton University - Fall 2025 36

Same as MDP land

Heuristics and Value Functions

As in MDP land, we can define value functions:

𝑉∗ 𝑠 = ൞

 0 if 𝐺(𝑠)

min
𝑎∶𝐼(𝑠,𝑎)

𝑠′=𝐹 𝑠,𝑎

𝐶 𝑠, 𝑎, 𝑠′ + 𝑉∗ 𝑠′ o. w.

A heuristic ෠𝑉 𝑠 is an approximate value function.
A heuristic is admissible if it never overestimates the cost-to-go:

For all 𝑠 ∈ 𝒮, ෠𝑉 𝑠 ≤ 𝑉∗(𝑠).

Tom Silver - Princeton University - Fall 2025 37

Graph Search Variations

Tom Silver - Princeton University - Fall 2025 38

Algorithm Priority Function Optimal? Notes

Uniform cost search path cost Yes

If costs are 1, this is breadth-first
search. Like Dijkstra’s, but returns
shortest path to goal, not shortest

paths to all states

Greedy best-first
search (GBFS) heuristic(state) No

Good choice for fast satisficing
planning

A* search
path cost +

heuristic(state) Depends
Optimal if heuristic is admissible (never

overestimates cost-to-go)

Depth first search negative path cost No
Can be more memory-efficient if

implemented as a special case

Where do Heuristics Come From?

1. Hand-designed based on understanding of the problem

2. Learned from data (later in the course)

3. Automatically derived from the problem representation

Tom Silver - Princeton University - Fall 2025 39

Factored Classical Planning Problems

Consider a classical planning problem where:

States are factored into 𝑛 Boolean features:

𝒮 = { T, F }𝑛

The goal is to “activate” features {𝑖1, … , 𝑖𝑚} (for 1 ≤ 𝑖𝑗 ≤ 𝑛):

𝐺 𝑠 = 𝑠[𝑖1] ∧ ⋯ ∧ 𝑠[𝑖𝑚]

Tom Silver - Princeton University - Fall 2025 40

Blocks World Example

Tom Silver - Princeton University - Fall 2025 41

Table

b
a

c

Feature Value

On-A-B True

On-A-C False

On-B-A False

On-B-C False

On-C-A False

On-C-B False

OnTable-A False

OnTable-B True

OnTable-C True

Holding-A False

Holding-B False

Holding-C False

HandEmpty True

Goal: b on a {On-B-A}

Blocks World Example

Tom Silver - Princeton University - Fall 2025 42

Table

b ac

Feature Value

On-A-B False

On-A-C False

On-B-A False

On-B-C False

On-C-A False

On-C-B False

OnTable-A True

OnTable-B True

OnTable-C True

Holding-A False

Holding-B False

Holding-C False

HandEmpty True

Goal: a on b &
b on c

{On-A-B,
 On-B-C}

Goal-Count: Our First Problem-Derived Heuristic

The goal-count heuristic counts the number of goal features that
are not yet activated:

𝑉𝐺𝐶 𝑠 ≜ |{𝑖 ∶ ¬𝑠 𝑖 ∧ 𝑖 ∈ 𝐺}|

Tom Silver - Princeton University - Fall 2025 43

Assuming all transition costs are 1,
is 𝑉𝐺𝐶 admissible?

Goal-Count Can Help!

Tom Silver - Princeton University - Fall 2025 44

Limitations of Goal-Count

1. Very sparse

2. Can be “misleading”

Tom Silver - Princeton University - Fall 2025 45

Examples?

Factoring Further: Actions + Transitions

A (STRIPS / PDDL) operator has:

1. Preconditions
2. Add effects
3. Delete effects

Notation: 𝜔 is an operator, 𝛺 is
the set of all operators

Tom Silver - Princeton University - Fall 2025 46

Each is a set
of features

Pick-A-from-C:

Preconditions: {HandEmpty,
 On-A-C,
Clear-A}

Add effects: {Holding-A, Clear-C}

Delete effects: {HandEmpty,
 On-A-C, Clear-A}

Factored Classical Planning Problems

A factored classical planning problem is:

1. A finite state space 𝒮 = 2 1,…,𝑛

2. A finite action space 𝒜 = 𝛺

3. An initiable action function 𝐼 𝑠, 𝜔 = pre 𝜔 ⊆ 𝑠

4. A transition function 𝐹 𝑠, 𝜔 = s − del 𝜔 ∪ add(𝜔)

5. A cost function 𝐶 𝑠, 𝜔, 𝑠′ = 1

6. An initial state 𝑠0 ∈ 𝒮

7. A goal function 𝐺 𝑠 = g ⊆ 𝑠

Tom Silver - Princeton University - Fall 2025 47

Set of all true features

Actions = operators

Preconditions hold

Effects

For simplicity

g is another feature set

Lifted Operators

It is often convenient to define
operators with parameters:
placeholders for objects

Objects can also be typed

Preprocessing: ground all lifted
operators with all combinations of
objects (obeying types)

Tom Silver - Princeton University - Fall 2025 48

Pick(?x, ?y):

Preconditions: {HandEmpty(),
 On(?x, ?y),
 Clear(?x)}

Add effects: {Holding(?x), Clear(?y)}

Delete effects: {HandEmpty(),
 On(?x, ?y)
 Clear(?x)}

A Recipe for Heuristic Generation

Tom Silver - Princeton University - Fall 2025 49

Original
Problem

Relaxed
Problem

Relax Plan
Relaxed
Solution

Relaxed
Value

Extract solution costUse as heuristic

Repeat at every
state

Delete Relaxation

Tom Silver - Princeton University - Fall 2025 50

Pick(?x, ?y):

Preconditions: {HandEmpty(),
 On(?x, ?y),
 Clear(?x)}

Add effects: {Holding(?x),
 Clear(?y)}

Delete effects: {HandEmpty(),
 On(?x, ?y)
 Clear(?x)}

Relax

Pick(?x, ?y):

Preconditions: {HandEmpty(),
 On(?x, ?y),
 Clear(?x)}

Add effects: {Holding(?x),
 Clear(?y)}

Delete effects: {}

Delete-Relax: Our Second Problem-Derived
Heuristic

The delete-relax heuristic 𝑉𝐷𝑅 𝑠 is the optimal cost of the relaxed
planning problem with initial state 𝑠.

Tom Silver - Princeton University - Fall 2025 51

Table

b ac
Goal: holding(a) &

holding(b)

What is 𝑉𝐷𝑅 𝑠 ?
What is 𝑉∗ 𝑠 ?

Is 𝑉𝐷𝑅 admissible?

Delete Relaxation Can Help!

Tom Silver - Princeton University - Fall 2025 52

But these plots are extremely misleading. Why?

More Revealing Plots

Tom Silver - Princeton University - Fall 2025 53

Solving delete-relaxed
problems exactly is formally

hard (NP-complete)

hFF: A Better Delete Relaxation Heuristic

Construct a non-optimal relaxed plan in a particular way:

Forward pass:
1. Imagine we could execute all initiable actions simultaneously
2. Aggregate the next states into superset of all active features
3. Repeat (1) and (2) until convergence (or goal is active)

Backward pass:
1. Build a relaxed plan by selecting “necessary” actions

Tom Silver - Princeton University - Fall 2025 54

Tom Silver - Princeton University - Fall 2025 55

★

★

★Goal

Feature 1
(active)

Feature 2
(active)

Feature 3
(inactive)

Tom Silver - Princeton University - Fall 2025 56

★

★

★

Tom Silver - Princeton University - Fall 2025 57

★

★

★

★

★

Operators

Tom Silver - Princeton University - Fall 2025 58

★

★

★

★

★

★

★

Operators

Tom Silver - Princeton University - Fall 2025 59

★

★

★

★

★

★

★

★

★

★

Tom Silver - Princeton University - Fall 2025 60

★

★

★

★

★

★

★

★

★

★

★

★

Convergence

Forward Pass Complete

Tom Silver - Princeton University - Fall 2025 61

★

★

★

★

★

★

★

★

★

★

★

★

Starting Backward Pass

Goal

Tom Silver - Princeton University - Fall 2025 62

★

★

★

★

★

★

★

★

★

★

★

★

Goal

Tom Silver - Princeton University - Fall 2025 63

★

★

★

★

★

★

★

★

★

★

★

Goal

★

Tom Silver - Princeton University - Fall 2025 64

★

★

★

★

★

★

★

★

★

★

★

Goal

★

Tom Silver - Princeton University - Fall 2025 65

★

★

★

★

★

★

★

★

★

★

★

Goal

★

Tom Silver - Princeton University - Fall 2025 66

★

★

★

★

★

★

★

★

★

★

Goal

★

★

Tom Silver - Princeton University - Fall 2025 67

★

★

★

★

★

★

★

★

★

★

Goal

★

★

Tom Silver - Princeton University - Fall 2025 68

★

★

★

★

★

★

★

★

★

Goal

★

★

★

Tom Silver - Princeton University - Fall 2025 69

★

★

★

★

★

★

★

★

★

Goal

★

★

★

Tom Silver - Princeton University - Fall 2025 70

★

★

★

★

★

★

★

★

Goal

★

★

★

★

Tom Silver - Princeton University - Fall 2025 71

★

★

★

★

★

★

★

★

★

★

★

★

Relaxed
Plan

Tom Silver - Princeton University - Fall 2025 72

★

★

★

★

★

★

★

★

★

★

★

★

Relaxed
Plan

𝑉ℎ𝐹𝐹 = 4

Tom Silver - Princeton University - Fall 2025 73

★

★

★

★

★

★

★

★

★

★

★

★Terminology:
Relaxed
Planning
Graph

Also useful for
testing reachability

Also useful for
pruning actions

hFF Can Really Help!

Tom Silver - Princeton University - Fall 2025 74

	Slide 1: Planning in Factored Spaces
	Slide 2: Recap and Preview
	Slide 3: Classical Planning Problem Setting
	Slide 4: Example: Blocks World
	Slide 5: Definition of a Solution (Plan)
	Slide 6: Example: Blocks World
	Slide 7: Example: Blocks World
	Slide 8: A Stupidest Possible Algorithm
	Slide 9: A Stupidest Possible Algorithm
	Slide 10: A Better Approach: Graph Search
	Slide 11: Graph Search
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Heuristics and Value Functions
	Slide 36: Heuristics and Value Functions
	Slide 37: Heuristics and Value Functions
	Slide 38: Graph Search Variations
	Slide 39: Where do Heuristics Come From?
	Slide 40: Factored Classical Planning Problems
	Slide 41: Blocks World Example
	Slide 42: Blocks World Example
	Slide 43: Goal-Count: Our First Problem-Derived Heuristic
	Slide 44: Goal-Count Can Help!
	Slide 45: Limitations of Goal-Count
	Slide 46: Factoring Further: Actions + Transitions
	Slide 47: Factored Classical Planning Problems
	Slide 48: Lifted Operators
	Slide 49: A Recipe for Heuristic Generation
	Slide 50: Delete Relaxation
	Slide 51: Delete-Relax: Our Second Problem-Derived Heuristic
	Slide 52: Delete Relaxation Can Help!
	Slide 53: More Revealing Plots
	Slide 54: hFF: A Better Delete Relaxation Heuristic
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74: hFF Can Really Help!

