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Recap and Preview

Earlier:

* Planning in finite “tabular” state and action spaces

» Careful treatment of uncertainty in transitions and observations
» Offline planning and online planning

Last Time:

 Planning in finite “factored” state and action spaces

 No more uncertainty

* Online planning only

This Time:

. P|anning in continuous spaces But with a very specific structure




Motion Planning

Kuffner (2002) Skydio (2019) Realtime Robotics (2023)
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Motion Planning Problem Setting

A motion planning problem includes:

Must be bounded & have distance metric &

e A configuration space X have other nice properties...
 An initial configuration x, € X

e A goa| configuration xg eEX Alternative definition: set of configurations

* A feasibility check f: X — {T,F} Usually: feasible (T) if robot not in collision



Motion Planning Solution

A solution to a motion planning problem is a trajectory

a:|0,H] » X
where
1. CX(O) = Xp Continuous states and continuous time!
2. a(H) = x,

3. The robot can follow the trajectory

Many different ways to specify this Actions are now implicit



* x and y position are bounded

Example: Motion Planning with 2D
* Subset of SE(2)
* Initial configuration: see image

Shapes
» Goal configuration: see image I

» Configuration space:
* (x position, y position, rotation)

 Feasibility check: .
» Configuration is feasible if robot

is not in collision with obstacles

¢
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A Stupidest Possible Algorithm

1. Discretize the configuration space

2. Run path planning (e.g., A* with distance-to-goal heuristic)

When will this go badly? Is this sound, complete, optimal?



A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle
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A “Bug Algorithm”
At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Show that this algorithm
is not complete

There are complete bug algorithms



Sampling-Based Motion Planning

Let’s assume we can sample from the configuration space



RRT(.’.U(),.’EQ,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:
4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
R .d I E I : 6 Ltarget — Tg
apl y Xp Orlng 7 else
8 / Sample a target configuration
Random Trees S = samle(®)
10 / Extend the tree towards the target
11 node = getClosest(nodes, ﬂ?target)
( R RT) 12 Tnode — node.conf
13 for z in extend(zoge, wtarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx = x4:
17 return finish(nodes)
18 else

19 break




RRT(CCo,:Eg,X,f)

______ 1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break
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RRT(:COawg:Xa.f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tpode— node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)

18 else

@ E 19 break
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Many interpolation

| strategies are possible

RRT(:COawg:Xa.f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break
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Important Hyperparameter: Feasibility Check Distance

Check Distance = 5.0 Check Distance = 1.0 Check Distance = 0.2

N R
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Properties of RRT

* Probabilistically complete

* Not optimal

* Single query
* Works with underactuated systems

* Works for kinodynamic problems
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The probability of expanding a
tree node is proportional to the
size of its Voronoi region

 Has Voronoi bias

https://en.wikipedia.org/wiki/Voronoi diagram

48
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Post-Processing with Shortcuts

Repeatedly sample two points on the trajectory and check if a
direct line between them is feasible (rewire if so)

Attempts =0

~
%

_
¢
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Post-Processing with Shortcuts

Repeatedly sample two points on the trajectory and check if a
direct line between them is feasible (rewire if so)

Attempts =0 Attempts = 100

N N g
e i

_
¢

R
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Post-Processing with Shortcuts

Repeatedly sample two points on the trajectory and check if a
direct line between them is feasible (rewire if so)

Attempts =0

Attempts = 100

Attempts = 10000

~
%

_
¢

~
i

R

~
.

R
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Bidirectional RRT ettt ayatoms

Grow two trees: one from start, the other from goal

N
]

R

~
i

R
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Demo with 7DOF Robot Arm

https://github.com/rpmml/rpmml-code/blob/mp-pybullet-

example/scripts/motion planning robot example.py

Tom Silver - Princeton University - Fall 2025
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Multi-Query Motion Planning

 RRT grows tree once, from initial to goal
e After the robot moves, need to start from scratch
« Can we build a representation once, up front, instead?

* Need a graph instead of a tree



BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

Probabilistic
Roadmaps (PRMs

UrpatePRM(x, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

B WN =




BuioPRM (X, f)

1 I_g;aph = UndirectedGraph()
2 peat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue
7

8

9

/ Update the graph
UpdatePRM(x, graph, f)
return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =
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BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 z = sample(X)

5 // Skip if not feasible

6 if not f(x): continue
7

8

9

/ Update the graph
UpdatePRM(x, graph, f)
return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =
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BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
x = sample(X)

|;/ Skip if not feasible
i

if not f(x): continue
Update the graph
UpdatePRM(x, graph, f)
return graph

4
5
6
7
8
9

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =
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1
2
3

4
5
6
7
8
9

1
2
3
4
5

= WN =

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
z = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)
for node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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4
5
6
7
8
9

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph

1

3
4
5

= WN =

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)

~Z fornode € getNeighbors(x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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1
2
3

4
5
6
7
8
9

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph

UppaTePRM(z, graph, f)

newNode — addNode(graph, x)

1
2
3
4
5

for node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

= WN =

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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BuioPRM (X, f)
1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =
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BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph )

1

3
4
5

= WN =

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)

~Z fornode € getNeighbors(x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph )

UppaTePRM(z, graph, f)

newNode — addNode(graph, x)

for node € getNeighbors(x)

1
2
3
4
5

= WN =

it pathFeasible(node.conft, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph )

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)

for etNeiahbors(x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)

ewNode

ret

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 z = sample(X)

5 // Skip if not feasible

6 if not f(x): continue
7

8

9

/ Update the graph
UpdatePRM(x, graph, f)
return graph

UppaTEPRM (2, graph, f)
1 newNode = addNode(graph, x)
2 fornode € getNeighbors(x)
3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =
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BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph )

UppaTEPRM (2, graph, f)
1
~Z 1fornode &€ getNeignbors(x)
3
4
5

= WN =

newNode = addNode(graph, x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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1

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph )

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)

tor node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)

5

= WN =

return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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BuioPRM (X, f)

graph = UndirectedGraph()
repeat:
// Sample from configuration space
x = sample(X)
// Skip if not feasible
if not f(x): continue
/ Update the graph
UpdatePRM(x, graph, f)
return graph

newNode = addNode(graph, x)
for node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

initNode = UpdatePRM(z, graph, f)
goalNode = UpdatePRM(z, graph, f)

UppaTePRM(z, graph, f)
1
2
3
4
5
QueryYPRM(zq, x4, graph, f)
nodePath = graphSearch(initNode, goalNode)

return finish(nodePath)
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BuioPRM (X, f)

graph = UndirectedGraph()
repeat:
// Sample from configuration space
x = sample(X)
// Skip if not feasible
if not f(x): continue
/ Update the graph
UpdatePRM(x, graph, f)
return graph

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)
for node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)
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BuioPRM (X, f)

graph = UndirectedGraph()
repeat:

// Sample from configuration space

x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)
return graph

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)
for node € getNeighbors(x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)

return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
— UpdatePRM(z 4, graph, f)

goalNode
nodePa

return finish(nodePath)
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BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(x,, graph, f)

nodePath = graphSearch(initNode, goalNode)

= WIN =

return finish(nodePath)
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BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(x,, graph, f)

nodePath = graphSearch(initNode, goalNode)

= WIN =

return finish(nodePath)

Tom Silver - Princeton University - Fall 2025 73



BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath — graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =
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BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, nc
return newNode Reuse graph for

new query
QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =
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BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, nc
return newNode Reuse graph for

new query
QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =
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When and Why Does Sampling-Based
Motion Planning Work?

 Works well when every
configuration “sees” a significant ‘
fraction of feasible space

* Prototypical bad situation:
narrow passages

* If interested: there are formal
guarantees in terms of e-
goodness and f-lookout

Tom Silver - Princeton University - Fall 2025



Implementation Considerations

1 S | Need to be careful depending
. ampiing on configuration space

Example: Sampling uniformly on a sphere requires some thought

This post gives a comprehensive list of the twenty most frequent and useful methods to uniformly
sample from a the surface of a d-sphere, and the interior of the d-ball.

https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
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Implementation Considerations

1. Sampling

Need to be careful when

2. Distance metrics angles are involved

Example: Weighted distance function in SE(2)

d(q1,q2) =V (q1-x — q2.%)2 + (q1.Y — q2.¥)% + w(qy. 0 — q5.6)?




Implementation Considerations

1. Sampling

2. Distance metrics

. Can often do better than
3. Nearest nelgh bors naive quadratic algorithm

Example: KD trees (for Euclidean configuration spaces)




Implementation Considerations

1. Sampling
2. Distance metrics
3. Nearest neighbors

. . Usually the speed bottleneck. Use
4. Collision CheCkmg existing optimized libraries!



Implementation Considerations

1. Sampling

2. Distance metrics
3. Nearest neighbors
4. Collision checking

5 ] nterpo|ation Linear, polynomial, trapezoidal...
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