Planning in Continuous Spaces:
Motion Planning

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025

Recap and Preview

Earlier:

* Planning in finite “tabular” state and action spaces

» Careful treatment of uncertainty in transitions and observations
» Offline planning and online planning

Last Time:

 Planning in finite “factored” state and action spaces

 No more uncertainty

* Online planning only

This Time:

. P|anning in continuous spaces But with a very specific structure

Motion Planning

Kuffner (2002) Skydio (2019) Realtime Robotics (2023)

Tom Silver - Princeton University - Fall 2025 3

Motion Planning Problem Setting

A motion planning problem includes:

Must be bounded & have distance metric &

e A configuration space X have other nice properties...
 An initial configuration x, € X

e A goa| configuration xg eEX Alternative definition: set of configurations

* A feasibility check f: X — {T,F} Usually: feasible (T) if robot not in collision

Motion Planning Solution

A solution to a motion planning problem is a trajectory

a:|0,H] » X
where
1. CX(O) = Xp Continuous states and continuous time!
2. a(H) = x,

3. The robot can follow the trajectory

Many different ways to specify this Actions are now implicit

* x and y position are bounded

Example: Motion Planning with 2D
* Subset of SE(2)
* Initial configuration: see image

Shapes
» Goal configuration: see image I

» Configuration space:
* (x position, y position, rotation)

 Feasibility check: .
» Configuration is feasible if robot

is not in collision with obstacles

¢

Tom Silver - Princeton University - Fall 2025

A Stupidest Possible Algorithm

1. Discretize the configuration space

2. Run path planning (e.g., A* with distance-to-goal heuristic)

When will this go badly? Is this sound, complete, optimal?

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

A “Bug Algorithm”

At each time step: oo

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

10

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

11

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

12

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

13

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

14

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

15

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

16

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

17

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

18

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

19

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

20

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

21

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

22

A “Bug Algorithm”

At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Tom Silver - Princeton University - Fall 2025

23

A “Bug Algorithm”
At each time step:

1. If can move directly
towards goal, do so

2. Otherwise, move ccw
around obstacle

Show that this algorithm
is not complete

There are complete bug algorithms

Sampling-Based Motion Planning

Let’s assume we can sample from the configuration space

RRT(.’.U(),.’EQ,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:
4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
R .d I E I : 6 Ltarget — Tg
apl y Xp Orlng 7 else
8 / Sample a target configuration
Random Trees S = samle(®)
10 / Extend the tree towards the target
11 node = getClosest(nodes, ﬂ?target)
(R RT) 12 Tnode — node.conf
13 for z in extend(zoge, wtarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx = x4:
17 return finish(nodes)
18 else

19 break

RRT(CCo,:Eg,X,f)

______ 1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 27

RRT(CCo,:Eg,X,f)

______ 1 // Initialize tree at
2 nodes = [Node(zq)]
5 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 28

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Lg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 29

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Tiarget)
12 Tnode — node.conf
13 for z 1n extend(Zode; Ltarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 30

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 — node.conf
13 for z in extend(Tnnde s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 31

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 32

RRT(CCo,:Eg,X,f)

______ 1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 33

&

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 34

&

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 tor x 1n extend(Znode; Ltarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 35

RRT(CCo,:Eg,X,f)

______ 1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 fr = x4
17 return finish(nodes)

18 else

D 19 break

Tom Silver - Princeton University - Fall 2025 36

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 fr = x4
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 37

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 fr = x4
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 38

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 fr = x4
17 return finish(nodes)

else

18
/\! E 19 break

Tom Silver - Princeton University - Fall 2025 39

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ttarget = Tg
7 else
8 / Sample a target configuration
9 Ttarget = Sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)

else

18
/\! E 19 break

Tom Silver - Princeton University - Fall 2025 40

RRT(CCo,:Eg,X,f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 / Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z 1n extend(Zode; Ltarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)

else

18
/\! E 19 break

Tom Silver - Princeton University - Fall 2025 41

RRT(:COawgaXa.f)

______ 1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tpode— node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)

else

18
/\! E 19 break

Tom Silver - Princeton University - Fall 2025 42

RRT(:COawgaXa.f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)

else

18
/\! E 19 break

Tom Silver - Princeton University - Fall 2025 43

RRT(:COawgaXa.f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 / Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z 1n extend(Zode; Ltarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)

else

18
/\! E 19 break

Tom Silver - Princeton University - Fall 2025 44

RRT(:COawg:Xa.f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tpode— node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)

18 else

@ E 19 break

Tom Silver - Princeton University - Fall 2025 45

Many interpolation

| strategies are possible

RRT(:COawg:Xa.f)

1 // Initialize tree at
2 nodes = [Node(zq)]
3 repeat:

4 if uniform() < goalSampleProb
5 / Try to go directly to the goal
6 Ltarget — Tg
7 else
8 / Sample a target configuration
9 Ttarget = sample(X)
10 // Extend the tree towards the target
11 node = getClosest(nodes, Ttarget)
12 Tnode — node.conf
13 for z in extend(Zpode ;s Ttarget)
14 if f(x):
15 nodes.add(Node(x))
16 ifx =x4:
17 return finish(nodes)
18 else
19 break

Tom Silver - Princeton University - Fall 2025 46

Important Hyperparameter: Feasibility Check Distance

Check Distance = 5.0 Check Distance = 1.0 Check Distance = 0.2

N R

Tom Silver - Princeton University - Fall 2025 47

Properties of RRT

* Probabilistically complete

* Not optimal

* Single query
* Works with underactuated systems

* Works for kinodynamic problems

Tom Silver - Princeton University - Fall 2025

The probability of expanding a
tree node is proportional to the
size of its Voronoi region

 Has Voronoi bias

https://en.wikipedia.org/wiki/Voronoi diagram

48

https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Voronoi_diagram

Post-Processing with Shortcuts

Repeatedly sample two points on the trajectory and check if a
direct line between them is feasible (rewire if so)

Attempts =0

~
%

_
¢

Tom Silver - Princeton University - Fall 2025

Post-Processing with Shortcuts

Repeatedly sample two points on the trajectory and check if a
direct line between them is feasible (rewire if so)

Attempts =0 Attempts = 100

N N g
e i

_
¢

R

Tom Silver - Princeton University - Fall 2025

50

Post-Processing with Shortcuts

Repeatedly sample two points on the trajectory and check if a
direct line between them is feasible (rewire if so)

Attempts =0

Attempts = 100

Attempts = 10000

~
%

_
¢

~
i

R

~
.

R

Tom Silver - Princeton University - Fall 2025

51

Bidirectional RRT ettt ayatoms

Grow two trees: one from start, the other from goal

N
]

R

~
i

R

Tom Silver - Princeton University - Fall 2025

52

Demo with 7DOF Robot Arm

https://github.com/rpmml/rpmml-code/blob/mp-pybullet-

example/scripts/motion planning robot example.py

Tom Silver - Princeton University - Fall 2025

53

https://github.com/rpmml/rpmml-code/blob/mp-pybullet-example/scripts/motion_planning_robot_example.py
https://github.com/rpmml/rpmml-code/blob/mp-pybullet-example/scripts/motion_planning_robot_example.py
https://github.com/rpmml/rpmml-code/blob/mp-pybullet-example/scripts/motion_planning_robot_example.py
https://github.com/rpmml/rpmml-code/blob/mp-pybullet-example/scripts/motion_planning_robot_example.py
https://github.com/rpmml/rpmml-code/blob/mp-pybullet-example/scripts/motion_planning_robot_example.py
https://github.com/rpmml/rpmml-code/blob/mp-pybullet-example/scripts/motion_planning_robot_example.py
https://github.com/rpmml/rpmml-code/blob/mp-pybullet-example/scripts/motion_planning_robot_example.py

Multi-Query Motion Planning

 RRT grows tree once, from initial to goal
e After the robot moves, need to start from scratch
« Can we build a representation once, up front, instead?

* Need a graph instead of a tree

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

Probabilistic
Roadmaps (PRMs

UrpatePRM(x, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

B WN =

BuioPRM (X, f)

1 I_g;aph = UndirectedGraph()
2 peat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue
7

8

9

/ Update the graph
UpdatePRM(x, graph, f)
return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =

Tom Silver - Princeton University - Fall 2025 56

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 z = sample(X)

5 // Skip if not feasible

6 if not f(x): continue
7

8

9

/ Update the graph
UpdatePRM(x, graph, f)
return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =

Tom Silver - Princeton University - Fall 2025 57

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
x = sample(X)

|;/ Skip if not feasible
i

if not f(x): continue
Update the graph
UpdatePRM(x, graph, f)
return graph

4
5
6
7
8
9

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =

Tom Silver - Princeton University - Fall 2025 58

1
2
3

4
5
6
7
8
9

1
2
3
4
5

= WN =

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
z = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)
for node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

59

1
2
3

4
5
6
7
8
9

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph

1

3
4
5

= WN =

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)

~Z fornode € getNeighbors(x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

60

1
2
3

4
5
6
7
8
9

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph

UppaTePRM(z, graph, f)

newNode — addNode(graph, x)

1
2
3
4
5

for node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

= WN =

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

61

BuioPRM (X, f)
1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =

Tom Silver - Princeton University - Fall 2025 62

1
2
3

4
5
6
7
8
9

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph)

1

3
4
5

= WN =

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)

~Z fornode € getNeighbors(x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

63

1
2
3

4
5
6
7
8
9

-~ P

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph)

UppaTePRM(z, graph, f)

newNode — addNode(graph, x)

for node € getNeighbors(x)

1
2
3
4
5

= WN =

it pathFeasible(node.conft, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

64

1
2
3

4
5
6
7
8
9

. -

1
2
3
4
5

= WN =

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph)

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)

for etNeiahbors(x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)

ewNode

ret

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

65

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 z = sample(X)

5 // Skip if not feasible

6 if not f(x): continue
7

8

9

/ Update the graph
UpdatePRM(x, graph, f)
return graph

UppaTEPRM (2, graph, f)
1 newNode = addNode(graph, x)
2 fornode € getNeighbors(x)
3 if pathFeasible(node.conf, z, f):
4 addEdge(graph, node, newNode)
5 return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =

Tom Silver - Princeton University - Fall 2025 66

1
2
3

4
5
6
7
8
9

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph)

UppaTEPRM (2, graph, f)
1
~Z 1fornode &€ getNeignbors(x)
3
4
5

= WN =

newNode = addNode(graph, x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

67

1
2
3

4
5
6
7
8
9

1

BuioPRM (X, f)

graph = UndirectedGraph()

repeat:

// Sample from configuration space
x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)

return graph)

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)

tor node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)

5

= WN =

return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

68

1
2
3

4
5
6
7
8
9

= WN =

BuioPRM (X, f)

graph = UndirectedGraph()
repeat:
// Sample from configuration space
x = sample(X)
// Skip if not feasible
if not f(x): continue
/ Update the graph
UpdatePRM(x, graph, f)
return graph

newNode = addNode(graph, x)
for node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

initNode = UpdatePRM(z, graph, f)
goalNode = UpdatePRM(z, graph, f)

UppaTePRM(z, graph, f)
1
2
3
4
5
QueryYPRM(zq, x4, graph, f)
nodePath = graphSearch(initNode, goalNode)

return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

69

1
2
3

4
5
6
7
8
9

1
2
3
4
5

= WN =

BuioPRM (X, f)

graph = UndirectedGraph()
repeat:
// Sample from configuration space
x = sample(X)
// Skip if not feasible
if not f(x): continue
/ Update the graph
UpdatePRM(x, graph, f)
return graph

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)
for node € getNeighbors(x)
if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

70

1
2
3

4
5
6
7
8
9

1
2
3
4
5

BuioPRM (X, f)

graph = UndirectedGraph()
repeat:

// Sample from configuration space

x = sample(X)

// Skip if not feasible

if not f(x): continue

/ Update the graph

UpdatePRM(x, graph, f)
return graph

UppaTePRM(z, graph, f)

newNode = addNode(graph, x)
for node € getNeighbors(x)

if pathFeasible(node.conf, z, f):
addEdge(graph, node, newNode)

return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
— UpdatePRM(z 4, graph, f)

goalNode
nodePa

return finish(nodePath)

Tom Silver - Princeton University - Fall 2025

71

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(x,, graph, f)

nodePath = graphSearch(initNode, goalNode)

= WIN =

return finish(nodePath)

Tom Silver - Princeton University - Fall 2025 72

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(x,, graph, f)

nodePath = graphSearch(initNode, goalNode)

= WIN =

return finish(nodePath)

Tom Silver - Princeton University - Fall 2025 73

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, node, newNode)
return newNode

QueryYPRM(zq, x4, graph, f)
initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)

nodePath — graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =

Tom Silver - Princeton University - Fall 2025 74

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, nc
return newNode Reuse graph for

new query
QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =

Tom Silver - Princeton University - Fall 2025 75

BuioPRM (X, f)

1 graph = UndirectedGraph()

2 repeat:

3 // Sample from configuration space
4 x = sample(X)

5 // Skip if not feasible

6 if not f(x): continue

7 / Update the graph

8 UpdatePRM(x, graph, f)

9 return graph

UppaTePRM(z, graph, f)

1 newNode = addNode(graph, x)

2 fornode € getNeighbors(x)

3 if pathFeasible(node.conf, z, f):
4

5

addEdge(graph, nc
return newNode Reuse graph for

new query
QueryYPRM(zq, x4, graph, f)

initNode = UpdatePRM(x(, graph, f)
goalNode = UpdatePRM(z, graph, f)
nodePath = graphSearch(initNode, goalNode)
return finish(nodePath)

= WN =

Tom Silver - Princeton University - Fall 2025 76

When and Why Does Sampling-Based
Motion Planning Work?

 Works well when every
configuration “sees” a significant ‘
fraction of feasible space

* Prototypical bad situation:
narrow passages

* If interested: there are formal
guarantees in terms of e-
goodness and f-lookout

Tom Silver - Princeton University - Fall 2025

Implementation Considerations

1 S | Need to be careful depending
. ampiing on configuration space

Example: Sampling uniformly on a sphere requires some thought

This post gives a comprehensive list of the twenty most frequent and useful methods to uniformly
sample from a the surface of a d-sphere, and the interior of the d-ball.

https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/

Tom Silver - Princeton University - Fall 2025 78

https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/

Implementation Considerations

1. Sampling

Need to be careful when

2. Distance metrics angles are involved

Example: Weighted distance function in SE(2)

d(q1,q2) =V (q1-x — q2.%)2 + (q1.Y — q2.¥)% + w(qy. 0 — q5.6)?

Implementation Considerations

1. Sampling

2. Distance metrics

. Can often do better than
3. Nearest nelgh bors naive quadratic algorithm

Example: KD trees (for Euclidean configuration spaces)

Implementation Considerations

1. Sampling
2. Distance metrics
3. Nearest neighbors

. . Usually the speed bottleneck. Use
4. Collision CheCkmg existing optimized libraries!

Implementation Considerations

1. Sampling

2. Distance metrics
3. Nearest neighbors
4. Collision checking

5] nterpo|ation Linear, polynomial, trapezoidal...

	Slide 1: Planning in Continuous Spaces: Motion Planning
	Slide 2: Recap and Preview
	Slide 3: Motion Planning
	Slide 4: Motion Planning Problem Setting
	Slide 5: Motion Planning Solution
	Slide 6: Example: Motion Planning with 2D Shapes
	Slide 7: A Stupidest Possible Algorithm
	Slide 8: A “Bug Algorithm”
	Slide 9: A “Bug Algorithm”
	Slide 10: A “Bug Algorithm”
	Slide 11: A “Bug Algorithm”
	Slide 12: A “Bug Algorithm”
	Slide 13: A “Bug Algorithm”
	Slide 14: A “Bug Algorithm”
	Slide 15: A “Bug Algorithm”
	Slide 16: A “Bug Algorithm”
	Slide 17: A “Bug Algorithm”
	Slide 18: A “Bug Algorithm”
	Slide 19: A “Bug Algorithm”
	Slide 20: A “Bug Algorithm”
	Slide 21: A “Bug Algorithm”
	Slide 22: A “Bug Algorithm”
	Slide 23: A “Bug Algorithm”
	Slide 24: A “Bug Algorithm”
	Slide 25: Sampling-Based Motion Planning
	Slide 26: Rapidly Exploring Random Trees (RRT)
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Important Hyperparameter: Feasibility Check Distance
	Slide 48: Properties of RRT
	Slide 49: Post-Processing with Shortcuts
	Slide 50: Post-Processing with Shortcuts
	Slide 51: Post-Processing with Shortcuts
	Slide 52: Bidirectional RRT
	Slide 53: Demo with 7DOF Robot Arm
	Slide 54: Multi-Query Motion Planning
	Slide 55: Probabilistic Roadmaps (PRMs)
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: When and Why Does Sampling-Based Motion Planning Work?
	Slide 78: Implementation Considerations
	Slide 79: Implementation Considerations
	Slide 80: Implementation Considerations
	Slide 81: Implementation Considerations
	Slide 82: Implementation Considerations

