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Recap and Preview
Earlier:
• Planning in finite “tabular” state and action spaces
• Careful treatment of uncertainty in transitions and observations
• Offline planning and online planning
Last Time:
• Planning in finite “factored” state and action spaces
• No more uncertainty
• Online planning only
This Time:
• Planning in continuous spaces
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But with a very specific structure



Motion Planning
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Skydio (2019)Kuffner (2002) Realtime Robotics (2023)



Motion Planning Problem Setting

A motion planning problem includes:

• A configuration space 𝒳

• An initial configuration 𝑥0 ∈ 𝒳

• A goal configuration 𝑥𝑔 ∈ 𝒳

• A feasibility check 𝑓: 𝒳 → { T, F } 
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Must be bounded & have distance metric & 
have other nice properties…

Alternative definition: set of configurations

Usually: feasible (T) if robot not in collision



Motion Planning Solution

A solution to a motion planning problem is a trajectory
𝛼: 0, 𝐻 → 𝒳

where
1. 𝛼 0 = 𝑥0

2. 𝛼 𝐻 = 𝑥𝑔

3. The robot can follow the trajectory
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Many different ways to specify this

Continuous states and continuous time!

Actions are now implicit



Example: Motion Planning with 2D 
Shapes
• Configuration space:

• (x position, y position, rotation) 
• x and y position are bounded
• Subset of SE(2)

• Initial configuration: see image
• Goal configuration: see image
• Feasibility check:

• Configuration is feasible if robot 
is not in collision with obstacles
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A Stupidest Possible Algorithm

1. Discretize the configuration space

2. Run path planning (e.g., A* with distance-to-goal heuristic)
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When will this go badly? Is this sound, complete, optimal?



A “Bug Algorithm”

At each time step:

1. If can move directly 
towards goal, do so

2. Otherwise, move ccw 
around obstacle
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Show that this algorithm 
is not complete

There are complete bug algorithms



Sampling-Based Motion Planning
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Let’s assume we can sample from the configuration space



Rapidly Exploring 
Random Trees 
(RRT)
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Many interpolation 
strategies are possible
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Important Hyperparameter: Feasibility Check Distance

Check Distance = 5.0 Check Distance = 1.0 Check Distance = 0.2



Properties of RRT

• Probabilistically complete

• Not optimal

• Single query

• Works with underactuated systems

• Works for kinodynamic problems
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• Has Voronoi bias

The probability of expanding a 
tree node is proportional to the 

size of its Voronoi region

https://en.wikipedia.org/wiki/Voronoi_diagram
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Post-Processing with Shortcuts
Repeatedly sample two points on the trajectory and check if a 
direct line between them is feasible (rewire if so)
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Attempts = 0
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Attempts = 0 Attempts = 100



Post-Processing with Shortcuts
Repeatedly sample two points on the trajectory and check if a 
direct line between them is feasible (rewire if so)
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Attempts = 0 Attempts = 100 Attempts = 10000



Bidirectional RRT
Grow two trees: one from start, the other from goal
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Does not work for 
underactuated systems



Demo with 7DOF Robot Arm

https://github.com/rpmml/rpmml-code/blob/mp-pybullet-
example/scripts/motion_planning_robot_example.py 
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Multi-Query Motion Planning

• RRT grows tree once, from initial to goal

• After the robot moves, need to start from scratch

• Can we build a representation once, up front, instead?

• Need a graph instead of a tree
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Probabilistic 
Roadmaps (PRMs)
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When and Why Does Sampling-Based 
Motion Planning Work?
• Works well when every 

configuration “sees” a significant 
fraction of feasible space 

• Prototypical bad situation: 
narrow passages

• If interested: there are formal 
guarantees in terms of 𝜖-
goodness and 𝛽-lookout
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Example: Sampling uniformly on a sphere requires some thought

Implementation Considerations

1. Sampling

Tom Silver - Princeton University - Fall 2025 78

Need to be careful depending 
on configuration space

https://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/
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Implementation Considerations

1. Sampling

2. Distance metrics
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Need to be careful when 
angles are involved

Example: Weighted distance function in SE(2)

𝑑 𝑞1, 𝑞2 = (𝑞1. 𝑥 − 𝑞2. 𝑥)2 + (𝑞1. 𝑦 − 𝑞2. 𝑦)2 + 𝑤(𝑞1. 𝜃 − 𝑞2. 𝜃)2



Implementation Considerations

1. Sampling

2. Distance metrics

3. Nearest neighbors
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Can often do better than 
naïve quadratic algorithm

Example: KD trees (for Euclidean configuration spaces)



Implementation Considerations

1. Sampling

2. Distance metrics

3. Nearest neighbors

4. Collision checking
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Usually the speed bottleneck. Use 
existing optimized libraries!



Implementation Considerations

1. Sampling

2. Distance metrics

3. Nearest neighbors

4. Collision checking

5. Interpolation
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Linear, polynomial, trapezoidal…


	Slide 1: Planning in Continuous Spaces: Motion Planning
	Slide 2: Recap and Preview
	Slide 3: Motion Planning
	Slide 4: Motion Planning Problem Setting
	Slide 5: Motion Planning Solution
	Slide 6: Example: Motion Planning with 2D Shapes
	Slide 7: A Stupidest Possible Algorithm
	Slide 8: A “Bug Algorithm”
	Slide 9: A “Bug Algorithm”
	Slide 10: A “Bug Algorithm”
	Slide 11: A “Bug Algorithm”
	Slide 12: A “Bug Algorithm”
	Slide 13: A “Bug Algorithm”
	Slide 14: A “Bug Algorithm”
	Slide 15: A “Bug Algorithm”
	Slide 16: A “Bug Algorithm”
	Slide 17: A “Bug Algorithm”
	Slide 18: A “Bug Algorithm”
	Slide 19: A “Bug Algorithm”
	Slide 20: A “Bug Algorithm”
	Slide 21: A “Bug Algorithm”
	Slide 22: A “Bug Algorithm”
	Slide 23: A “Bug Algorithm”
	Slide 24: A “Bug Algorithm”
	Slide 25: Sampling-Based Motion Planning
	Slide 26: Rapidly Exploring Random Trees (RRT)
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Important Hyperparameter: Feasibility Check Distance
	Slide 48: Properties of RRT
	Slide 49: Post-Processing with Shortcuts
	Slide 50: Post-Processing with Shortcuts
	Slide 51: Post-Processing with Shortcuts
	Slide 52: Bidirectional RRT
	Slide 53: Demo with 7DOF Robot Arm
	Slide 54: Multi-Query Motion Planning
	Slide 55: Probabilistic Roadmaps (PRMs)
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: When and Why Does Sampling-Based Motion Planning Work?
	Slide 78: Implementation Considerations
	Slide 79: Implementation Considerations
	Slide 80: Implementation Considerations
	Slide 81: Implementation Considerations
	Slide 82: Implementation Considerations

