
Planning in Continuous Spaces:
Trajectory Optimization

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025

Recap

• Last time: Motion planning, our first foray into continuous
spaces

• This time: Planning in more general continuous spaces

• For example, planning in cases where dynamics are important

• Continue assuming full observability and determinism

• New material and then full-course review game!
Tom Silver - Princeton University - Fall 2025 2

Tom Silver - Princeton University - Fall 2025 3

Trajectory Optimization Problems

We will consider discrete-time, finite-horizon, deterministic problems with:

1. A state space 𝒳 ⊆ ℝ𝑛

2. An action space 𝒰 ⊆ ℝ𝑚

3. A transition function 𝐹: 𝒳 × 𝒰 → 𝒳

4. A cost function 𝐶: 𝒳 × 𝒰 ∗ × 𝒳 → ℝ
5. An initial state 𝑥0 ∈ 𝒳

6. A time horizon 𝐻 ∈ ℤ+

Tom Silver - Princeton University - Fall 2025 4

Over full trajectories!
Common to sum over

transition costs instead.

Real-valued vectors

Trajectory Optimization Problems
Our objective is to find a plan

(𝑢0, 𝑢1, … , 𝑢𝐻−1)

with corresponding states

𝑥0, 𝑥1, … , 𝑥𝐻

where 𝑥𝑡+1 = 𝐹(𝑥𝑡 , 𝑢𝑡)

that minimizes
𝐶(𝑥0, 𝑢0, 𝑥1, 𝑢1, … , 𝑢𝐻−1, 𝑥𝐻)

Tom Silver - Princeton University - Fall 2025 5

Example: Double Integrator

State space: 𝒳 ⊆ ℝ2

Action space: 𝒰 ⊆ ℝ

Transition function:

𝐹
𝑧𝑡

ሶ𝑧𝑡
, 𝑢𝑡 =

𝑧𝑡 + ሶ𝑧𝑡+1Δ𝑡
ሶ𝑧𝑡+1 + 𝑢𝑡𝛥𝑡

Cost function:

𝐶 … = σ𝑡 𝑧𝑡
2 + 0.1 ሶ𝑧𝑡

2 + 0.01𝑢𝑡
2

Initial state: −1
0

 Horizon: 25

Tom Silver - Princeton University - Fall 2025 6

0

Position and Velocity

Acceleration

𝑧

Δ𝑡 = 0.1

Example: Inverted Pendulum

Tom Silver - Princeton University - Fall 2025 7

State space: 𝒳 ⊆ ℝ2

Action space: 𝒰 ⊆ ℝ

Transition function:

𝐹
𝜃𝑡

ሶ𝜃𝑡
, 𝑢𝑡 =

𝜃𝑡 + ሶ𝜃𝑡+1Δ𝑡
ሶ𝜃𝑡 + (𝑘1sin 𝜃𝑡 + 𝑘2𝑢𝑡)𝛥𝑡

Cost function:
𝐶 … = σ𝑡 𝜃𝑡

2 + 0.1 ሶ𝜃𝑡
2 + 0.01𝑢𝑡

2

Initial state:
𝜋
1

 Horizon: 200

Angle and Velocity

Torque

Stupidest Possible Algorithm

Repeat until impatient:
1. Sample a plan 𝑢0, 𝑢1, … , 𝑢𝐻−1 ~ 𝑼

2. Run through 𝐹 to get 𝑥0, 𝑥1, … , 𝑥𝐻

3. Evaluate 𝐶(𝑥0, 𝑢0, 𝑥1, 𝑢1, … , 𝑢𝐻−1, 𝑥𝐻)

Return the best seen plan

Tom Silver - Princeton University - Fall 2025 8

For example, from some
Gaussian distribution

Trajectory Optimization Taxonomy

Tom Silver - Princeton University - Fall 2025 9

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Stupidest Possible Algorithm

Tom Silver - Princeton University - Fall 2025 10

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Can We Do Better in this Category?

Tom Silver - Princeton University - Fall 2025 11

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Shooting as Unconstrained Optimization

Let 𝒖 = (𝑢0, 𝑢1, … , 𝑢𝐻−1) and let 𝐶 𝒖 be the corresponding cost

Restating our objective:
min

𝒖
𝐶(𝒖)

This is now just an unconstrained continuous optimization
problem

Let’s leverage tools…
Tom Silver - Princeton University - Fall 2025 12

Zero-Order Continuous Optimization

A.k.a. “derivative-free” or “blackbox” optimization

Notable examples:
• Random search
• Cross-entropy method
• Bayesian optimization
• Evolution strategies
• Nelder-Mead

Tom Silver - Princeton University - Fall 2025 13

We will briefly discuss these

Random Search

Initialize 𝒖 randomly
Repeat:

Sample 𝒖’ in the neighborhood of 𝒖
If 𝐶 𝒖′ < 𝐶(𝒖):
 𝒖 ← 𝒖′

Tom Silver - Princeton University - Fall 2025 14

“Algorithms that are invented independently by four different communities
probably have something good going for them.” – Ben Recht (2018)

Many possible variations
on “neighborhood”

When might this work
better than our SPA?

Limitation: sampling does
not adapt!

Cross-Entropy Method

Tom Silver - Princeton University - Fall 2025 15

Define P(𝒖 ∣ 𝜽) for some initial 𝜽
Repeat:

Sample N times from P(𝒖 ∣ 𝜽)

Order the samples by cost: 𝐶(𝒖𝟏) < 𝐶(𝒖𝟐) < … < 𝑪(𝒖𝑵)

Keep the top K samples: [𝒖𝟏, … , 𝒖𝑲]

Fit a new distribution to the samples: 𝜽 = 𝒇𝒊𝒕([𝒖𝟏, … , 𝒖𝑲])

Example: Gaussian; 𝜽 is
mean and variance

Example: compute
mean and variance

Illustration of CEM

16

𝒖

𝐶

𝒖

𝐶

𝒖

P(𝒖 ∣ 𝜽)

𝒖

Samples

𝒖

P(𝒖 ∣ 𝜽)

𝒖

Samples

𝒖

𝐶

𝒖

P(𝒖 ∣ 𝜽)

𝒖

Samples

General Trick 1: Model-Predictive Control

Given problem with initial state 𝑥0 and horizon 𝑇

Repeat:
1. Solve for (𝑢0, 𝑢1, … , 𝑢𝐻−1)

2. Execute the first action 𝑢0

3. Update 𝑥0 to the new state
4. Update 𝑇 = 𝑇 − 1

Tom Silver - Princeton University - Fall 2025 17

Can also look 𝑇’ < 𝑇 steps ahead:
“receding horizon control”

Main benefit: solving can be very
approximate, as long as it’s fast

Common to run one step of
iterative optimization

Important: warm-start
optimization from previous step

General Trick 2: Optimize Splines Instead

Optimizing (𝑢0, 𝑢1, … , 𝑢𝐻−1) is slow for large 𝐻
Instead, optimize over lower-dimensional 𝛼:

𝑢𝑡 = 𝑓 𝑡, 𝜶 where 𝜶 ∈ ℝ𝑑 and 𝑑 ≪ 𝑚𝐻

Common: think of 𝛼 as “action waypoints” and
interpolate between them

For example, linear splines (see right)

Tom Silver - Princeton University - Fall 2025 18

𝑡

𝑢

𝛼
𝑢

General Trick 3: Initialize Well

For iterative methods (which most are), the initialization matters!

Extreme case: initialize at the global optimum

More common: try to initialize “near” a “good local optimum”

One trick: solve a reduced problem to get an initialization
• Similar in spirit to deriving heuristics from problem relaxations
• The backflipping BD robot does this!

Tom Silver - Princeton University - Fall 2025 19

Also helpful for debugging

Predictive Sampling

Tom Silver - Princeton University - Fall 2025 20

MPC + Splines + Random Search

Sometimes works surprisingly well

Predictive Sampling in Pendulum Env

Tom Silver - Princeton University - Fall 2025 21

Predictive Sampling

Tom Silver - Princeton University - Fall 2025 22

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Gradient-Based Shooting Methods

Tom Silver - Princeton University - Fall 2025 23

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Gradient Descent

Recall our objective: min
𝒖

𝐶(𝒖)

Suppose costs and dynamics are differentiable
This sounds like a job for gradient descent!

 Repeat:
 𝒖 ← 𝒖 − 𝛾∇𝐶(𝒖)

Tom Silver - Princeton University - Fall 2025 24

Or approximate with
finite differences

(e.g., MuJoCo does this)

Or SGD, or Adam, or whatever…

What is ∇𝐶(𝒖)?

Calculate a Gradient? Myself?

Or we can let autodiff do it for us

We then need to define the
dynamics & costs in those terms

Tom Silver - Princeton University - Fall 2025 25

Tensorflow, PyTorch, JAX, etc.

Example: Double Integrator

State space: 𝒳 ⊆ ℝ2

Action space: 𝒰 ⊆ ℝ

Transition function:

𝐹
𝑧𝑡

ሶ𝑧𝑡
, 𝑢𝑡 =

𝑧𝑡 + ሶ𝑧𝑡+1Δ𝑡
ሶ𝑧𝑡+1 + 𝑢𝑡𝛥𝑡

Cost function:

𝐶 … = σ𝑡 𝑧𝑡
2 + 0.1 ሶ𝑧𝑡

2 + 0.01𝑢𝑡
2

Initial state: −1
0

 Horizon: 25

Tom Silver - Princeton University - Fall 2025 26

0

Position and Velocity

Acceleration

𝑧

Δ𝑡 = 0.1

Tom Silver - Princeton University - Fall 2025 27

Tom Silver - Princeton University - Fall 2025 28

Gradient Descent with JAX in Double Integrator

Tom Silver - Princeton University - Fall 2025 29

Behind the Scenes

JAX knows (in this problem) that 𝐶 𝒖 = σ𝑡 𝑐(𝑥𝑡 , 𝑢𝑡)

and (in general) that

𝑥1 = 𝐹 𝑥0, 𝑢0
𝑥2 = 𝐹 𝐹 𝑥0, 𝑢0 , 𝑢1
𝑥3 = 𝐹(𝐹 𝐹 𝑥0, 𝑢0 , 𝑢1 , 𝑢2)

Tom Silver - Princeton University - Fall 2025 30

𝑐(𝑥𝑡, 𝑢𝑡) happens to be
quadratic in this problem (not
important)

This is reminiscent of the function
composition in neural networks…

Behind the Scenes

JAX is using reverse-mode autodiff (backpropagation)
1. Simulate forward to get 𝑥𝑡+1 = 𝐹 𝑥𝑡 , 𝑢𝑡

2. Calculate state gradients backwards:

𝜆𝑡−1 =
𝜕𝑐 𝑥𝑡 , 𝑢𝑡

𝜕𝑥𝑡
+

𝜕𝐹 𝑥𝑡 , 𝑢𝑡

𝜕𝑥𝑡

𝑇

𝜆𝑡

Starting with 𝜆𝐻 =
𝜕𝑐 𝑥𝐻

𝜕𝑥𝐻

Tom Silver - Princeton University - Fall 2025 31

“Co-state” “Adjoint equation”

Behind the Scenes

JAX is using reverse-mode autodiff (backpropagation)
1. Simulate forward to get 𝑥𝑡+1 = 𝐹 𝑥𝑡 , 𝑢𝑡

2. Calculate state gradients backwards
3. Calculate the action gradients

𝜕𝐶

𝜕𝑢𝑡
=

𝜕𝑐 𝑥𝑡 , 𝑢𝑡

𝜕𝑢𝑡
+

𝜕𝐹 𝑥𝑡 , 𝑢𝑡

𝜕𝑥𝑡

𝑇

𝜆𝑡

Tom Silver - Princeton University - Fall 2025 32

Take a moment to appreciate
that this is way better than
naïve gradient calculation!

Differentiating through Splines

Recall spline trick: 𝑢𝑡 = 𝑓 𝑡, 𝜶

Chain rule again:
𝜕𝐶

𝜕𝜶
=

𝜕𝐶

𝜕𝒖

𝜕𝒖

𝜕𝜶

This is also handled easily by autodiff (so long as spline is
implemented using autodiff)

Tom Silver - Princeton University - Fall 2025 33

control points = 5

Tom Silver - Princeton University - Fall 2025 34

Trading Off Speed and Cost

Tom Silver - Princeton University - Fall 2025 35

Gradient Descent in Pendulum

Tom Silver - Princeton University - Fall 2025 36

It is certainly possible to
do better than this, but it
is very finicky…

Differentiable Physics Engines

Tom Silver - Princeton University - Fall 2025 37

Freeman et al. (2021)

See also:
• Dojo (Howell et al. 2022)
• End-to-End Differentiable

Physics for Learning and
Control (De Avila Belbute
Peres et al. 2018)

• Tiny Differentiable
Simulator (Coumans 2020)

• Several others

Second-Order Shooting Methods

Tom Silver - Princeton University - Fall 2025 38

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Newton’s Method (a.k.a. Newton–Raphson)

Tom Silver - Princeton University - Fall 2025 39

Need to be careful if
Hessian is not PSD; Taylor
parabola would flip

For a twice differentiable function
𝑓(𝑥) that we want to minimize:

𝑥𝑖+1 = 𝑥𝑖 + 𝑓′′ 𝑥 −1𝑓′(𝑥)

(Initialize 𝑥0 and repeat to converge)

Uses Hessian 𝑓′′ 𝑥 , so 2nd order

Differential Dynamic Programming

Tom Silver - Princeton University - Fall 2025 40

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Differential Dynamic Programming (DDP)

Let’s apply Newton’s method to our shooting problem: min
𝒖

𝐶(𝒖)

As with gradient descent, want to avoid naïve computation
• Especially now that we need Hessians!

We will do a similar forward-backward procedure, but this time:
1. Estimate cost-to-go (value function) at each step
2. Use second-order info
3. Build up explicit function approximations

Tom Silver - Princeton University - Fall 2025 41

See excellent reference: “Control-Limited Differential Dynamic Programming” (Tassa et al. 2014)

Differential Dynamic Programming (DDP)

(Hamilton-Jacobi-) Bellman Equations:

𝑉𝐻 𝑥𝐻 = 𝑐(𝑥𝐻)
𝑉𝑡 𝑥𝑡 = min

𝑢𝑡

𝑐 𝑥𝑡 , 𝑢𝑡 + 𝑉𝑡+1(𝐹 𝑥𝑡 , 𝑢𝑡)

Forward pass, given nominal 𝒖:

𝑥1 = 𝐹 𝑥0, 𝑢0
𝑥2 = 𝐹 𝑥1, 𝑢1
𝑥3 = 𝐹(𝑥2, 𝑢2)

…

Tom Silver - Princeton University - Fall 2025 42

Same as we’re used to,
just simpler because of
no stochasticity

Same as in gradient descent

Differential Dynamic Programming (DDP)

Consider the usual Q functions, but now centered around nominal
trajectory. So the input is a difference with respect to the nominal:

𝑄𝑡 𝜕𝑥𝑡 , 𝜕𝑢𝑡 = 𝑐(𝑥𝑡 + 𝜕𝑥𝑡, 𝑢𝑡 + 𝜕𝑢𝑡) + 𝑉𝑡+1 𝐹 𝑥𝑡 + 𝜕𝑥𝑡 , 𝑢𝑡 + 𝜕𝑢𝑡

The 2nd order Taylor expansion of 𝑄𝑡 is:

𝑄𝑡 𝜕𝑥𝑡 , 𝜕𝑢𝑡 ≈
1

2

1
𝜕𝑥𝑡

𝜕𝑢𝑡

𝑇
0 𝑀𝑥

𝑇 𝑀𝑢
𝑇

𝑀𝑥 𝑀𝑥𝑥 𝑀𝑥𝑢

𝑀𝑢 𝑀𝑢𝑥 𝑀𝑢𝑢

1
𝜕𝑥𝑡

𝜕𝑢𝑡

Tom Silver - Princeton University - Fall 2025 43

Each submatrix 𝑀 can be
computed from step t+1
quantities!

Differential Dynamic Programming (DDP)

If 𝑄𝑡 𝜕𝑥𝑡 , 𝜕𝑢𝑡 is quadratic (which we are ensuring), then:

1. The optimal control modification is linear (affine):

𝜕𝑢𝑡
∗(𝜕𝑥𝑡) = argmin𝜕𝑢𝑡

 𝑄𝑡 𝜕𝑥𝑡 , 𝜕𝑢𝑡 = 𝑘 + 𝐾𝜕𝑥𝑡

2. The value function is quadratic (not shown)

This is what ensures the backward pass does not “blow up”!

Tom Silver - Princeton University - Fall 2025 44

Differential Dynamic Programming (DDP)

• Forward and backward pass can be repeated iteratively

• Updating nominal 𝒖 after each iteration

• These iterations are Newton-Raphson steps

Tom Silver - Princeton University - Fall 2025 45

DDP Summary

1. It’s like dynamic programming from finite-horizon MDP land...
2. But instead of tabular value functions, we have quadratic ones
3. The quadratic functions are derived approximately from 2nd

order Taylor expansions of the Q functions
4. So it’s really just Newton’s method + DP!
5. Remember: if the underlying system is nonlinear, this all could

be terrible…

Tom Silver - Princeton University - Fall 2025 46

DDP → iLQR

Tom Silver - Princeton University - Fall 2025 47

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

Sometimes lower-order methods approximate higher-order ones

Gauss-Newton (≈Newton)
→TrajOpt: iLQR (≈DDP)

Finite differences

iLQR → LQR

If the underlying dynamics are linear and costs are quadratic, then
one step of iLQR is enough to get optimal performance

Similarly: Newton’s method finds global optimum in 1 step if
function is quadratic

This is called LQR (Linear Quadratic Regulator)

Very well-studied system in control theory

Tom Silver - Princeton University - Fall 2025 48

Bonus: adding
Gaussian noise doesn’t
really change anything
(except the name:
LQG)

Beware of Optimizing Iterated Functions

Shooting requires repeatedly composing:

𝑥1 = 𝐹 𝑥0, 𝑢0
𝑥2 = 𝐹 𝐹 𝑥0, 𝑢0 , 𝑢1
𝑥3 = 𝐹(𝐹 𝐹 𝑥0, 𝑢0 , 𝑢1 , 𝑢2)

...

This can lead to very difficult optimization
landscapes; issues like RNN training

Tom Silver - Princeton University - Fall 2025 49

Figure from Roger Grosse (2017)

A Different Way….

Tom Silver - Princeton University - Fall 2025 50

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Direct Transcription

min
𝒙,𝒖

 𝐶 𝒙, 𝒖

subject to 𝑥𝑡+1 = 𝐹(𝑥𝑡 , 𝑢𝑡)
At first glance…
• Aren’t we just making the optimization harder?
• Now the optimizer needs to “figure out” the dynamics, too…

But maybe…
• We are giving the optimizer more freedom
• For example: it could find good future states

and then “reason backwards” to get actions

Tom Silver - Princeton University - Fall 2025 51

Equality constraints

Optimizing states too!

Also: since we’re now doing
constrained optimization, we
could easily incorporate
other constraints

Constrained Optimization

min
𝑧

 𝑓 𝑧

subject to 𝑔𝑖 𝑧 = 0

 ℎ𝑗 𝑧 ≥ 0

• There are many methods for solving problems of this form
• As usual, restricting the function classes leads to better methods

• For now, we will assume access to a black-box solver
• In practice, we recommend SNOPT (via Drake)

Tom Silver - Princeton University - Fall 2025 52

Equality constraints

Inequality constraints

Objective

Tom Silver - Princeton University - Fall 2025 53

SNOPT on Pendulum
With final state constraint and torque costs

Tom Silver - Princeton University - Fall 2025 54

Pretty impressive!

Peek Behind the Scenes

• SNOPT is a highly optimized version of sequential quadratic
programming, a general method for constrained optimization

• SQP repeatedly creates a quadratic approximation of the
objective around a nominal solution and then takes a Newton-
Raphson step (much like we saw in DDP!)

• To handle constraints, SQP uses the Lagrange:

ℒ 𝑥, 𝜆, 𝜎 = 𝑓 𝑥 + 𝜆ℎ 𝑥 + 𝜎𝑔(𝑥)

Tom Silver - Princeton University - Fall 2025 55

𝜆 and 𝜎 are
Lagrange multipliers

SNOPT also
leverages sparsity
of equations for
efficiency, like
DDP

TrajOpt with SNOPT

Tom Silver - Princeton University - Fall 2025 56

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot

Highest Level Takeaways

• Cast your trajectory optimization as general optimization

• But then leverage the trajectory structure to make computation
more efficient (forward pass, backward pass, etc.)

• Use off-the-shelf optimization tools when possible

Tom Silver - Princeton University - Fall 2025 57

Good References

• Russ Tedrake’s evolving notes:
https://underactuated.mit.edu/trajopt.html

• Sergey Levine’s lecture slides:
https://rll.berkeley.edu/deeprlcoursesp17/docs/week_2_lecture
_2_optimal_control.pdf

• The MuJoCo MPC (Predictive Sampling) paper:
https://arxiv.org/pdf/2212.00541

• The constrained DDP paper:
https://homes.cs.washington.edu/~todorov/papers/TassaICRA1
4.pdf

Tom Silver - Princeton University - Fall 2025 58

https://underactuated.mit.edu/trajopt.html
https://rll.berkeley.edu/deeprlcoursesp17/docs/week_2_lecture_2_optimal_control.pdf
https://rll.berkeley.edu/deeprlcoursesp17/docs/week_2_lecture_2_optimal_control.pdf
https://arxiv.org/pdf/2212.00541
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf

Let’s Play a Review Game

Bar trivia rules
• Break up into teams of 3-5
• Give your team a great name
• I will ask questions
• You will discuss quietly with your team
• Write down your answer
• Hold it up when I say so

Tom Silver - Princeton University - Fall 2025 59

Question 1

What are the three kinds of MDP time horizons?

Tom Silver - Princeton University - Fall 2025 60

Question 2

Suppose an MDP has N states, M actions, and for each state and
action, there are at most K next states with nonzero probability.

What is the time complexity of one iteration of value iteration,

assuming a good implementation?

Tom Silver - Princeton University - Fall 2025 61

Question 3

Consider the following “code”:

def solve_infinite_horizon_mdp(mdp):

 finite_horizon_mdp = convert_to_finite_horizon(mdp)

 policy = solve_finite_horizon_mdp(finite_horizon_mdp)

 # Guaranteed optimal policy for original mdp

 return policy

Is there some implementation of convert_to_finite_horizon
that would make this code correct?

Tom Silver - Princeton University - Fall 2025 62

Question 4

Consider expectimax search in an MDP with 2 actions and 3
possible next states for each (state, action) pair.

Suppose we run expectimax search to a horizon of H=5.

Assuming that there are no redundant states, so trees ==
AODAGs, how many Bellman backups would we perform in total?

Tom Silver - Princeton University - Fall 2025 63

Question 5

Which of the following bandit exploration strategies are
guaranteed to try all arms infinitely often in the limit?

1. Uniform random
2. Exploit only
3. Epsilon-greedy (for nontrivial epsilon)
4. UCB

You may select multiple.

Tom Silver - Princeton University - Fall 2025 64

Question 6

Which of the following is true about MCTS, but not about RTDP?

1. Requires only simulator access to MDP
2. Focuses on “promising” parts of AODAG
3. Adds one new state node at each iteration
4. Backpropagates values after each iteration
5. Uses rollout heuristic to estimate leaf node values
6. Uses greedy policy to select nodes to expand

You may select multiple.

Tom Silver - Princeton University - Fall 2025 65

Question 7

What is the time complexity of one step of state estimation for
POMDPs?

Tom Silver - Princeton University - Fall 2025 66

Question 8

Describe a POMDP with 2 states and 2 observations where the
corresponding Belief MDP has an infinite number of reachable
states given any initial observation. Or explain why this is
impossible.

Tom Silver - Princeton University - Fall 2025 67

Question 9

True or false: in classical planning, given an optimal heuristic, the
number of nodes expanded by A* is equal to the number of
actions in the output plan.

Tom Silver - Princeton University - Fall 2025 68

Question 10

Describe how one might use some of the trajectory optimization
techniques we saw today to solve the motion planning problems
that we saw last class. Write down key bullet point ideas,
including how we would do this and why/when it would work well
or not.
We’ll use the “best” answer to break any ties!

Tom Silver - Princeton University - Fall 2025 69

	Slide 1: Planning in Continuous Spaces: Trajectory Optimization
	Slide 2: Recap
	Slide 3
	Slide 4: Trajectory Optimization Problems
	Slide 5: Trajectory Optimization Problems
	Slide 6: Example: Double Integrator
	Slide 7: Example: Inverted Pendulum
	Slide 8: Stupidest Possible Algorithm
	Slide 9: Trajectory Optimization Taxonomy
	Slide 10: Stupidest Possible Algorithm
	Slide 11: Can We Do Better in this Category?
	Slide 12: Shooting as Unconstrained Optimization
	Slide 13: Zero-Order Continuous Optimization
	Slide 14: Random Search
	Slide 15: Cross-Entropy Method
	Slide 16: Illustration of CEM
	Slide 17: General Trick 1: Model-Predictive Control
	Slide 18: General Trick 2: Optimize Splines Instead
	Slide 19: General Trick 3: Initialize Well
	Slide 20: Predictive Sampling
	Slide 21: Predictive Sampling in Pendulum Env
	Slide 22: Predictive Sampling
	Slide 23: Gradient-Based Shooting Methods
	Slide 24: Gradient Descent
	Slide 25: Calculate a Gradient? Myself?
	Slide 26: Example: Double Integrator
	Slide 27
	Slide 28
	Slide 29: Gradient Descent with JAX in Double Integrator
	Slide 30: Behind the Scenes
	Slide 31: Behind the Scenes
	Slide 32: Behind the Scenes
	Slide 33: Differentiating through Splines
	Slide 34: # control points = 5
	Slide 35: Trading Off Speed and Cost
	Slide 36: Gradient Descent in Pendulum
	Slide 37: Differentiable Physics Engines
	Slide 38: Second-Order Shooting Methods
	Slide 39: Newton’s Method (a.k.a. Newton–Raphson)
	Slide 40: Differential Dynamic Programming
	Slide 41: Differential Dynamic Programming (DDP)
	Slide 42: Differential Dynamic Programming (DDP)
	Slide 43: Differential Dynamic Programming (DDP)
	Slide 44: Differential Dynamic Programming (DDP)
	Slide 45: Differential Dynamic Programming (DDP)
	Slide 46: DDP Summary
	Slide 47: DDP → iLQR
	Slide 48: iLQR  LQR
	Slide 49: Beware of Optimizing Iterated Functions
	Slide 50: A Different Way….
	Slide 51: Direct Transcription
	Slide 52: Constrained Optimization
	Slide 53
	Slide 54: SNOPT on Pendulum
	Slide 55: Peek Behind the Scenes
	Slide 56: TrajOpt with SNOPT
	Slide 57: Highest Level Takeaways
	Slide 58: Good References
	Slide 59: Let’s Play a Review Game
	Slide 60: Question 1
	Slide 61: Question 2
	Slide 62: Question 3
	Slide 63: Question 4
	Slide 64: Question 5
	Slide 65: Question 6
	Slide 66: Question 7
	Slide 67: Question 8
	Slide 68: Question 9
	Slide 69: Question 10

