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Recap

 Last time: Motion planning, our first foray into continuous
spaces

* This time: Planning in more general continuous spaces

* For example, planning in cases where dynamics are important

* Continue assuming full observability and determinism

 New material and then full-course review game!
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Trajectory Optimization Problems

We will consider discrete-time, finite-horizon, deterministic problems with:

A state space X’ € R"

An action space U € R™

A transition function F: X XU - X

A cost function C: (X X ‘U)* XX =P overful trajectories!
Common to sum over

An initial state Xg EX transition costs instead.
A time horizon H € Z*

Real-valued vectors

S o



Trajectory Optimization Problems

Our objective is to find a plan
(Ug, Up, ooy Ug—q1)

with corresponding states

(Xg, X1, eeer Xpg)
Where Xty1 = F(xt, ut)

that minimizes
C(xg, Ug, X1, Uq, e, Ug—1, XE)



Example: Double Integrator

State space: X C ]Rz Position and Velocity
Action space: U € R Acceleration
Transition function:

o ([Zt y ) B [Zt + Zt;lAt] At = 0.1
0t Zt.-l-l +utAt

Cost function: .

C(..) =Y,z + 0.1Z,° + 0.01u?

Initial state: [_O ] Horizon: 25



Example: Inverted Pendulum

State space: X’ € R?  Angle and Velocity
Action space: U S R Torque
Transition function: .

Ht Ht —+ 8t+1At
F . ) ut — . ]

0, 0, + (kysin(6;) + k,u,)At
Cost function:
C(..) =Y,0%+ 0.167 + 0.01u?

Initial state: [ﬂ Horizon: 200




Stupidest Possible Algorithm

Repeat until impatient:

For example, from some
1. Sample a plan (ug, uq, ..., ug_1)~ U Gaussian distribution
2. Run through F to get (xg, x4, ..., Xg)

3. Evaluate C(xq, ug, x4, Uy, .., Uy_1, Xg)

Return the best seen plan



Trajectory Optimization Taxonomy

What is optimized?

Actions States and Actions
a.k.a. indirect or shooting a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot
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Can We Do Better in this Category?

What is optimized?

Actions States and Actions
a.k.a. indirect or shooting a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot




Shooting as Unconstrained Optimization

Let u = (uy, uq, ..., uy_1) and let C(u) be the corresponding cost

Restating our objective:

min C(u)
u

This is now just an unconstrained continuous optimization
problem

Let’s leverage tools...



Zero-Order Continuous Optimization

A.k.a. “derivative-free” or “blackbox” optimization

Notable examples:
 Random search

* Cross-entropy method
» Bayesian optimization
* Evolution strategies

* Nelder-Mead

We will briefly discuss these



RandOm Sea rCh Limitation: sampling does
not adapt!

Initialize u randomly

When might this work

Repeat:
P better than our SPA?

Sample u’ in the neighborhood of u
If C(u') < C(w):

u<u Many possible variations
on “neighborhood”

“Algorithms that are invented independently by four different communities
probably have something good going for them.” - Ben Recht (2018)




Cross-Entropy Method

Define P(u | 8) for some initial 8 Example: Gaussian: 0 is
Repeat: mean and variance

Sample N times from P(u | 0)

Order the samples by cost: C(uy) < C(uy) < ... < C(uy)
Keep the top K samples: [uy, ..., ug]

Fit a new distribution to the samples: 8 = fit([uy, ..., ug]) Example: compute

mean and variance
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General Trick 1: Model-Predictive Control

Given problem with initial state x, and horizon T

Can also look T’ < T steps ahead:

Repeat: “receding horizon control”
1. Solve for (uO' Uqy veesy uH—l) Common to run one step of
. ] erati fimizati
2. Execute the first action u, FETATIVE OPHImization
3. Update x, to the new state Important: warm-start
A4 Update T =T 1 optimization from previous step
p ate = —_—

Main benefit: solving can be very
approximate, as long as it’s fast



General Trick 2: Optimize Splines Instead

Optimizing (ug, uq, ..., uy_q1) is slow for large H
Instead, optimize over lower-dimensional «a:

u, = f(t, @) where ¢ € R and d « mH

Common: think of a as “action waypoints” and
interpolate between them

For example, linear splines (see right)




General Trick 3: Initialize Well

For iterative methods (which most are), the initialization matters!

Extreme case: initialize at the global optimum Also helpful for debugging

More common: try to initialize “near” a “good local optimum”

One trick: solve a reduced problem to get an initialization
 Similar in spirit to deriving heuristics from problem relaxations
* The backflipping BD robot does this!



Predictive Sampling

0 DeepMind 2022-12-27

Predictive Sampling:
Real-time Behaviour Synthesis with MuJoCo

Taylor Howelll2, Nimrod Gileadi2, Saran Tunyasuvunakoolz, Kevin Zakka?-3, Tom ErezZ and Yuval Tassa?
1Stanford University, 2DeepMind, >University of California Berkeley

MPC + Splines + Random Search

Sometimes works surprisingly well



Predictive Sampling in Pendulum Env

Predictive Sampling (Pendulum)
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Predictive Sampling

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions

a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order

First-order

Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all

Some

A lot




Gradient-Based Shooting Methods

What is optimized?

Actions States and Actions
a.k.a. indirect or shooting a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot




Gradient Descent

Recall our objective: min C(u)
u

Or approximate with

Suppose costs and dynamics are differentiable R

This sounds like a job for gradient descent! )

Or SGD, or Adam, or whatever...

Repeat:
U<—u-— yVC’(u) What is VC(u)?




Calculate a Gradient? Myself?

Or we can let autodiff do it for us
@jax.jit
Tensorflow, PyTorch, JAX, etc. def F(x, u):

We then need to define the
dynamics & costs in those terms

@jax.jit
def C(xs, us):

Tom Silver - Princeton University - Fall 2025
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Example: Double Integrator

State space: X C ]Rz Position and Velocity
Action space: U € R Acceleration
Transition function:

o ([Zt y ) B [Zt + Zt;lAt] At = 0.1
0t Zt.-l-l +utAt

Cost function: .

C(..) =Y,z + 0.1Z,° + 0.01u?

Initial state: [_O ] Horizon: 25



@jax.jit

def _get_next_state(
state: TrajOptState,
action: TrajOptAction,
dt: float,

) -> TrajOptState:

X, X_dot = state
u = action[0]

next x dot = x _dot + u * dt
next x = x + next _x _dot * dt

return jnp.array([next_x, next_x_dot], dtype=jnp.float32)
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def _objective(params: NDArray[jnp.float32]) -> float:
spline = point_sequence_to_trajectory(params, dt=dt)
traj = self._solution_to_trajectory(spline, initial_state, horizon)
return _get_traj_cost(traj)

dt = horizon / (self._config.num_control_points - 1)
init_params = jnp.array(
[init_traj(t) for t in self._get_control_times(horizon)]

)

solver = self._solver_cls(fun=_objective, **self._solver_kwargs)

params, _ = solver.run(init_params)

return point_sequence_to_trajectory(params, dt=dt)
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Gradient Descent with JAX in Double Integrator

Iter = 0, Loss = 29.010
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Behind the Scenes

JAX knows (in this problem) that C(u) = ), c(x¢, us)

c(x¢, uy) happens to be
qguadratic in this problem (not
important)

and (in general) that
x; = F(xg,up)

_ This is reminiscent of the function
X2 = F(F (XO, uo)’ ul) composition in neural networks...
X3 = F(F(F(inuO)J ul)JuZ)



Behind the Scenes

JAX is using reverse-mode autodiff (backpropagation)
1. Simulate forward to get x;,; = F(x;, u;)
2. Calculate state gradients backwards:
ac(xbut) aF(xtJut)T €A o .
“Co-state” At—l — axt + axt /1t Adjoint equation

Starting with A, = Oc(xp)

a.X'H




Behind the Scenes

JAX is using reverse-mode autodiff (backpropagation)
1. Simulate forward to get x;,; = F(x;, u;)

2. Calculate state gradients backwards tThakea.m.Ome”t D E[IEEEIE
at this is way better than
3. Calculate the action gradients naive gradient calculation!

0C _dcCreus)  OF(x, uy) ]
aut aut axt ;




Differentiating through Splines
Recall spline trick: u; = f(t, a)

Chain rule again:
0C  0Cou

da  Juda

This is also handled easily by autodiff (so long as spline is
implemented using autodiff)



Control
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Final Trajectory Cost
v oo o0 34 N o ©
on o o on o on

Trading Off Speed and Cost

Double Integrator + Gradient Descent

92

! 30
r—-25-
w
()]
<20
£
215
@]
w
101
0 100 200 300 400 500 0 100

Num Control Points

Tom Silver - Princeton University - Fall 2025

200 300
Num Control Points

400

500

35



Gradient Descent in Pendulum

It is certainly possible to
do better than this, but it
is very finicky...
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Differentiable Physics Engines
B R A x See also:

* Dojo (Howell et al. 2022)
 End-to-End Differentiable
Physics for Learning and
\ &\ Control (De Avila Belbute
Peres et al. 2018)
> » Tiny Differentiable

| h&@» " \ Simulator (Coumans 2020)
> (

 Several others

Freeman et al. (2021)

Tom Silver - Princeton University - Fall 2025
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Second-Order Shooting Methods

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions

a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order

First-order

Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all

Some

A lot




Newton’s Method (a.k.a. Newton-Raphson)

Newton's Methpd

! e

— f(x)

Taylor

Current x

Next x

For a twice differentiable function
f (x) that we want to minimize:

Xiy1 = x; + [ (O] (%)
(Initialize xy and repeat to converge)

Uses Hessian f"(x), so 2" order

Need to be careful if
Hessian is not PSD; Taylor
parabola would flip



Differential Dynamic Programming

What is optimized?

Actions States and Actions
a.k.a. indirect or shooting a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot




Differential Dynamic Programming (DDP)

See excellent reference: “Control-Limited Differential Dynamic Programming” (Tassa et al. 2014)

Let’s apply Newton's method to our shooting problem: min C(u)
u

As with gradient descent, want to avoid naive computation
» Especially now that we need Hessians!

We will do a similar forward-backward procedure, but this time:
1. Estimate cost-to-go (value function) at each step
2. Use second-order info

3. Build up explicit function approximations



Differential Dynamic Programming (DDP)

(Hamilton-Jacobi-) Bellman Equations:

Vy(xy) = c(xy) Same as we're used to,

Vi) = min e ) + Ve (Fre ) hstaambminy

Forward pass, given nominal u:

X1 = F(XO, uo)
Xy = F(xl,ul) Same as in gradient descent
x3 = F(x2,u3)



Differential Dynamic Programming (DDP)

Consider the usual Q functions, but now centered around nominal
trajectory. So the input is a difference with respect to the nominal:

Q. (0x;,0u;) = c(xp + 0xp, up + 0uy) + Vt+1(F(xt + 0x;, u;y + aut))

The 2nd order Taylor expansion of Q, is:

- 1T R ;
T T
1 1 0 MX Mu 1 Each submatrix M can be
Qt (6xt, aut) ~ — axt Mx Mxx qu axt compL.J’Fed from step t+1
2 quantities!
_aut_ _Mu M, x Muu_ _aut_




Differential Dynamic Programming (DDP)

If Q.(0x,,0u,) is quadratic (which we are ensuring), then:

1. The optimal control modification is linear (affine):

du;(0x;) = argming,,, Q:(dx¢, du,) =k + Kox,

2. The value function is quadratic (not shown)

This is what ensures the backward pass does not “blow up”!



Differential Dynamic Programming (DDP)

* Forward and backward pass can be repeated iteratively
« Updating nominal u after each iteration

* These iterations are Newton-Raphson steps



DDP Summary

1. It's like dynamic programming from finite-horizon MDP land...
2. Butinstead of tabular value functions, we have quadratic ones

3. The quadratic functions are derived approximately from 2nd
order Taylor expansions of the Q functions

4. So it’s really just Newton’s method + DP!

5. Remember: if the underlying system is nonlinear, this all could
be terrible...



DDP = iLQR

Sometimes lower-order methods approximate higher-order ones

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

e

Finite differences Gauss-Newton (=Newton)
2> TrajOpt: iLQR (~DDP)




ILQR =2 LQR

If the underlying dynamics are linear and costs are quadratic, then
one step of iLQR is enough to get optimal performance

Similarly: Newton’s method finds global optimum in 1 step if
function is quadratic

Bonus: adding

This is called LQR (Linear Quadratic Regulator) 227> °""0s

really change anything
(except the name:

Very well-studied system in control theory LQG)



Beware of Optimizing Iterated Functions

Shooting requires repeatedly composing:

X1 = F(XO, uO)
xy = F(F(xg,up), uy)
X3 = F(F(F(XO) uO)J ul): uZ)

This can lead to very difficult optimization
landscapes; issues like RNN training

Figure 2: Iterations of the function f(z) =3.5z (1 — ).

Figure from Roger Grosse (2017)



A Different Way....

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions

a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order

First-order

Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all

Some

A lot




Direct Transcription

min C(x, u) Optimizing states too!
XU

subjectto x;y1 = F (Xt Uy) Equality constraints

At first glance...

« Aren’t we just making the optimization harder?
* Now the optimizer needs to “figure out” the dynamics, too...

But maybe...

o N S Also: since we're now doing
We are giving the optimizer more freedom constrained optimization, we

* For example: it could find good future states could easily incorporate
and then “reason backwards” to get actions other constraints



Constrained Optimization

min f ( Z) Objective
Z

subject to g-(z) =0 Equality constraints
i

hj (z) >0 Inequality constraints

* There are many methods for solving problems of this form
* As usual, restricting the function classes leads to better methods

* For now, we will assume access to a black-box solver
* |n practice, we recommend SNOPT (via Drake)



from pydrake.all import MathematicalProgram, Solve, eq

program = MathematicalProgram()

states = program.NewContinuousVariables(horizon + 1, state_dim, "x")

actions = program.NewContinuousVariables(horizon, action_dim, "u")

initial_state_constraint = eq(states[0], initial_state)
program.AddConstraint(initial_state_constraint)

for t in range(horizon):
s t, a_t, s_tl1 = states[t], actions[t], states[t + 1]

for ¢ in problem.create_transition_constraints(s_t, a_t, s_t1):

program.AddConstraint(c)

cost = problem.create_cost(states, actions)
program.AddCost(cost)

result = Solve(program)

Tom Silver - Princeton University - Fall 2025
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SNOPT on Pendulum

With final state constraint and torque costs

Pretty impressive!

Tom Silver - Princeton University - Fall 2025
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Peek Behind the Scenes

« SNOPT is a highly optimized version of sequential quadratic
programming, a general method for constrained optimization

* SQP repeatedly creates a quadratic approximation of the
objective around a nominal solution and then takes a Newton-
Raphson step (much like we saw in DDP!) SNOPT also

leverages sparsity
of equations for
» To handle constraints, SQP uses the Lagrange: ~ §7gen®: ke

A and o are

£(X, /1; o ) — f (X) T /U’l(X) T og (X) Lagrange multipliers



TrajOpt with SNOPT

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions

a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order

First-order

Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all

Some

A lot




Highest Level Takeaways

» Cast your trajectory optimization as general optimization

* But then leverage the trajectory structure to make computation
more efficient (forward pass, backward pass, etc.)

« Use off-the-shelf optimization tools when possible



Good References

« Russ Tedrake’s evolving notes:
https://underactuated.mit.edu/trajopt.html

« Sergey Levine’s lecture slides:
https://rll.berkeley.edu/deepricoursesp17/docs/week 2 lecture
-2 optimal control.pdf

* The MuJoCo MPC (Predictive Sampling) paper:
https://arxiv.org/pdf/2212.00541

* The constrained DDP paper:
https://homes.cs.washington.edu/~todorov/papers/TassalCRA1

4.pdf

Tom Silver - Princeton University - Fall 2025 58


https://underactuated.mit.edu/trajopt.html
https://rll.berkeley.edu/deeprlcoursesp17/docs/week_2_lecture_2_optimal_control.pdf
https://rll.berkeley.edu/deeprlcoursesp17/docs/week_2_lecture_2_optimal_control.pdf
https://arxiv.org/pdf/2212.00541
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf

Let’s Play a Review Game

Bar trivia rules

* Break up into teams of 3-5

* Give your team a great name

* | will ask questions

* You will discuss quietly with your team
* Write down your answer

* Hold it up when | say so



Question 1

What are the three kinds of MDP time horizons?



Question 2

Suppose an MDP has N states, M actions, and for each state and
action, there are at most K next states with nonzero probability.

What is the time complexity of one iteration of value iteration,
assuming a good implementation?



Question 3

Consider the following “code”:

def solve _infinite horizon mdp(mdp):
finite horizon mdp = convert to finite horizon(mdp)
policy = solve finite horizon mdp(finite_horizon_mdp)
# Guaranteed optimal policy for original mdp
return policy

|s there some implementation of convert to finite horizon
that would make this code correct?



Question 4

Consider expectimax search in an MDP with 2 actions and 3
possible next states for each (state, action) pair.

Suppose we run expectimax search to a horizon of H=5.

Assuming that there are no redundant states, so trees ==
AODAGs, how many Bellman backups would we perform in total?



Question 5

Which of the following bandit exploration strategies are
guaranteed to try all arms infinitely often in the limit?

Uniform random

Exploit only

Epsilon-greedy (for nontrivial epsilon)
UCB

=

You may select multiple.



Question 6

Which of the following is true about MCTS, but not about RTDP?

Requires only simulator access to MDP

Focuses on “promising” parts of AODAG

Adds one new state node at each iteration
Backpropagates values after each iteration

Uses rollout heuristic to estimate leaf node values
Uses greedy policy to select nodes to expand

S A

You may select multiple.



Question /

What is the time complexity of one step of state estimation for
POMDPs?



Question 8

Describe a POMDP with 2 states and 2 observations where the
corresponding Belief MDP has an infinite number of reachable
states given any initial observation. Or explain why this is

impossible.



Question 2

True or false: in classical planning, given an optimal heuristic, the
number of nodes expanded by A* is equal to the number of
actions in the output plan.



Question 10

Describe how one might use some of the trajectory optimization
techniques we saw today to solve the motion planning problems
that we saw last class. Write down key bullet point ideas,
including how we would do this and why/when it would work well

or not.
We'll use the “best” answer to break any ties!
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