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Recap

• Last time: Motion planning, our first foray into continuous 
spaces

• This time: Planning in more general continuous spaces

• For example, planning in cases where dynamics are important

• Continue assuming full observability and determinism

• New material and then full-course review game!
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Trajectory Optimization Problems

We will consider discrete-time, finite-horizon, deterministic problems with:

1. A state space 𝒳 ⊆ ℝ𝑛

2. An action space 𝒰 ⊆ ℝ𝑚

3. A transition function 𝐹: 𝒳 × 𝒰 → 𝒳

4. A cost function 𝐶: 𝒳 × 𝒰 ∗ × 𝒳 → ℝ
5. An initial state 𝑥0 ∈ 𝒳

6. A time horizon 𝐻 ∈ ℤ+
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Over full trajectories! 
Common to sum over 

transition costs instead.

Real-valued vectors



Trajectory Optimization Problems
Our objective is to find a plan

(𝑢0, 𝑢1, … , 𝑢𝐻−1)

with corresponding states

𝑥0, 𝑥1, … , 𝑥𝐻

where 𝑥𝑡+1 = 𝐹(𝑥𝑡 , 𝑢𝑡)

that minimizes
𝐶(𝑥0, 𝑢0, 𝑥1, 𝑢1, … , 𝑢𝐻−1, 𝑥𝐻)
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Example: Double Integrator

State space: 𝒳 ⊆ ℝ2

Action space: 𝒰 ⊆ ℝ

Transition function:

𝐹
𝑧𝑡

ሶ𝑧𝑡
, 𝑢𝑡 =

𝑧𝑡 + ሶ𝑧𝑡+1Δ𝑡
ሶ𝑧𝑡+1 + 𝑢𝑡𝛥𝑡

Cost function:

𝐶 … = σ𝑡 𝑧𝑡
2 + 0.1 ሶ𝑧𝑡

2 + 0.01𝑢𝑡
2

Initial state: −1
0

 Horizon: 25
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0

Position and Velocity

Acceleration

𝑧

Δ𝑡 = 0.1



Example: Inverted Pendulum
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State space: 𝒳 ⊆ ℝ2

Action space: 𝒰 ⊆ ℝ

Transition function:

𝐹
𝜃𝑡

ሶ𝜃𝑡
, 𝑢𝑡 =

𝜃𝑡 + ሶ𝜃𝑡+1Δ𝑡
ሶ𝜃𝑡 + (𝑘1sin 𝜃𝑡 + 𝑘2𝑢𝑡)𝛥𝑡

Cost function:
𝐶 … = σ𝑡 𝜃𝑡

2 + 0.1 ሶ𝜃𝑡
2 + 0.01𝑢𝑡

2

Initial state:
𝜋
1

 Horizon: 200

Angle and Velocity

Torque



Stupidest Possible Algorithm

Repeat until impatient:
1. Sample a plan 𝑢0, 𝑢1, … , 𝑢𝐻−1 ~ 𝑼

2. Run through 𝐹 to get 𝑥0, 𝑥1, … , 𝑥𝐻

3. Evaluate 𝐶(𝑥0, 𝑢0, 𝑥1, 𝑢1, … , 𝑢𝐻−1, 𝑥𝐻)

Return the best seen plan
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For example, from some 
Gaussian distribution



Trajectory Optimization Taxonomy
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What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Stupidest Possible Algorithm
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What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Can We Do Better in this Category?
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What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Shooting as Unconstrained Optimization

Let 𝒖 = (𝑢0, 𝑢1, … , 𝑢𝐻−1) and let 𝐶 𝒖  be the corresponding cost

Restating our objective:
min

𝒖
𝐶(𝒖)

This is now just an unconstrained continuous optimization 
problem

Let’s leverage tools…
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Zero-Order Continuous Optimization

A.k.a. “derivative-free” or “blackbox” optimization

Notable examples:
• Random search
• Cross-entropy method
• Bayesian optimization
• Evolution strategies
• Nelder-Mead
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We will briefly discuss these



Random Search

Initialize 𝒖 randomly
Repeat:

Sample 𝒖’ in the neighborhood of 𝒖
If 𝐶 𝒖′ < 𝐶(𝒖):
  𝒖 ← 𝒖′
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“Algorithms that are invented independently by four different communities 
probably have something good going for them.” – Ben Recht (2018)

Many possible variations 
on “neighborhood”

When might this work 
better than our SPA?

Limitation: sampling does 
not adapt!



Cross-Entropy Method
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Define P(𝒖 ∣ 𝜽) for some initial 𝜽
Repeat:

Sample N times from P(𝒖 ∣ 𝜽) 

Order the samples by cost: 𝐶(𝒖𝟏) <  𝐶(𝒖𝟐) <  …  < 𝑪(𝒖𝑵)

Keep the top K samples: [𝒖𝟏, … , 𝒖𝑲] 

Fit a new distribution to the samples: 𝜽 = 𝒇𝒊𝒕([𝒖𝟏, … , 𝒖𝑲])

Example: Gaussian; 𝜽 is 
mean and variance

Example: compute 
mean and variance



Illustration of CEM

16
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General Trick 1: Model-Predictive Control

Given problem with initial state 𝑥0 and horizon 𝑇

Repeat:
1. Solve for (𝑢0, 𝑢1, … , 𝑢𝐻−1)

2. Execute the first action 𝑢0

3. Update 𝑥0 to the new state
4. Update 𝑇 = 𝑇 − 1
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Can also look 𝑇’ < 𝑇 steps ahead: 
“receding horizon control” 

Main benefit: solving can be very 
approximate, as long as it’s fast

Common to run one step of 
iterative optimization

Important: warm-start 
optimization from previous step



General Trick 2: Optimize Splines Instead

Optimizing (𝑢0, 𝑢1, … , 𝑢𝐻−1) is slow for large 𝐻
Instead, optimize over lower-dimensional 𝛼: 

𝑢𝑡 = 𝑓 𝑡, 𝜶  where 𝜶 ∈ ℝ𝑑  and 𝑑 ≪ 𝑚𝐻

Common: think of 𝛼 as “action waypoints” and 
interpolate between them

For example, linear splines (see right)
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𝑡

𝑢

𝛼
𝑢



General Trick 3: Initialize Well

For iterative methods (which most are), the initialization matters!

Extreme case: initialize at the global optimum

More common: try to initialize “near” a “good local optimum”

One trick: solve a reduced problem to get an initialization
• Similar in spirit to deriving heuristics from problem relaxations
• The backflipping BD robot does this!
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Also helpful for debugging



Predictive Sampling
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MPC + Splines + Random Search

Sometimes works surprisingly well



Predictive Sampling in Pendulum Env
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Predictive Sampling
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What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Gradient-Based Shooting Methods
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What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Gradient Descent

Recall our objective: min
𝒖

𝐶(𝒖)

Suppose costs and dynamics are differentiable
This sounds like a job for gradient descent!

    Repeat:
 𝒖 ← 𝒖 − 𝛾∇𝐶(𝒖)
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Or approximate with 
finite differences

(e.g., MuJoCo does this)

Or SGD, or Adam, or whatever…

What is ∇𝐶(𝒖)? 



Calculate a Gradient? Myself?

Or we can let autodiff do it for us

We then need to define the 
dynamics & costs in those terms
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Tensorflow, PyTorch, JAX, etc.



Example: Double Integrator

State space: 𝒳 ⊆ ℝ2

Action space: 𝒰 ⊆ ℝ

Transition function:

𝐹
𝑧𝑡

ሶ𝑧𝑡
, 𝑢𝑡 =

𝑧𝑡 + ሶ𝑧𝑡+1Δ𝑡
ሶ𝑧𝑡+1 + 𝑢𝑡𝛥𝑡

Cost function:

𝐶 … = σ𝑡 𝑧𝑡
2 + 0.1 ሶ𝑧𝑡

2 + 0.01𝑢𝑡
2

Initial state: −1
0

 Horizon: 25
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0

Position and Velocity

Acceleration

𝑧

Δ𝑡 = 0.1
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Gradient Descent with JAX in Double Integrator

Tom Silver - Princeton University - Fall 2025 29



Behind the Scenes

JAX knows (in this problem) that 𝐶 𝒖 = σ𝑡 𝑐(𝑥𝑡 , 𝑢𝑡)

and (in general) that

𝑥1 = 𝐹 𝑥0, 𝑢0
𝑥2 = 𝐹 𝐹 𝑥0, 𝑢0 , 𝑢1
𝑥3 = 𝐹(𝐹 𝐹 𝑥0, 𝑢0 , 𝑢1 , 𝑢2)
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𝑐(𝑥𝑡, 𝑢𝑡) happens to be 
quadratic in this problem (not 
important)

This is reminiscent of the function 
composition in neural networks…



Behind the Scenes

JAX is using reverse-mode autodiff (backpropagation)
1. Simulate forward to get 𝑥𝑡+1 = 𝐹 𝑥𝑡 , 𝑢𝑡

2. Calculate state gradients backwards:

𝜆𝑡−1 =
𝜕𝑐 𝑥𝑡 , 𝑢𝑡

𝜕𝑥𝑡
+

𝜕𝐹 𝑥𝑡 , 𝑢𝑡

𝜕𝑥𝑡

𝑇

𝜆𝑡

Starting with 𝜆𝐻 =
𝜕𝑐 𝑥𝐻

𝜕𝑥𝐻
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“Co-state” “Adjoint equation”



Behind the Scenes

JAX is using reverse-mode autodiff (backpropagation)
1. Simulate forward to get 𝑥𝑡+1 = 𝐹 𝑥𝑡 , 𝑢𝑡

2. Calculate state gradients backwards
3. Calculate the action gradients

𝜕𝐶

𝜕𝑢𝑡
=

𝜕𝑐 𝑥𝑡 , 𝑢𝑡

𝜕𝑢𝑡
+

𝜕𝐹 𝑥𝑡 , 𝑢𝑡

𝜕𝑥𝑡

𝑇

𝜆𝑡
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Take a moment to appreciate 
that this is way better than 
naïve gradient calculation!



Differentiating through Splines

Recall spline trick: 𝑢𝑡 = 𝑓 𝑡, 𝜶

Chain rule again:
𝜕𝐶

𝜕𝜶
=

𝜕𝐶

𝜕𝒖

𝜕𝒖

𝜕𝜶

This is also handled easily by autodiff (so long as spline is 
implemented using autodiff)
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# control points = 5
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Trading Off Speed and Cost
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Gradient Descent in Pendulum
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It is certainly possible to 
do better than this, but it 
is very finicky…



Differentiable Physics Engines

Tom Silver - Princeton University - Fall 2025 37

Freeman et al. (2021)

See also:
• Dojo (Howell et al. 2022)
• End-to-End Differentiable 

Physics for Learning and 
Control (De Avila Belbute 
Peres et al. 2018)

• Tiny Differentiable 
Simulator (Coumans 2020)

• Several others



Second-Order Shooting Methods
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What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Newton’s Method (a.k.a. Newton–Raphson)
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Need to be careful if 
Hessian is not PSD; Taylor 
parabola would flip

For a twice differentiable function 
𝑓(𝑥) that we want to minimize:

𝑥𝑖+1 = 𝑥𝑖 + 𝑓′′ 𝑥 −1𝑓′(𝑥)

(Initialize 𝑥0 and repeat to converge)

Uses Hessian 𝑓′′ 𝑥 , so 2nd order



Differential Dynamic Programming
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What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Differential Dynamic Programming (DDP)

Let’s apply Newton’s method to our shooting problem: min
𝒖

𝐶(𝒖)

As with gradient descent, want to avoid naïve computation
• Especially now that we need Hessians!

We will do a similar forward-backward procedure, but this time:
1. Estimate cost-to-go (value function) at each step
2. Use second-order info
3. Build up explicit function approximations
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See excellent reference: “Control-Limited Differential Dynamic Programming” (Tassa et al. 2014)



Differential Dynamic Programming (DDP)

(Hamilton-Jacobi-) Bellman Equations:

𝑉𝐻 𝑥𝐻 = 𝑐(𝑥𝐻)
𝑉𝑡 𝑥𝑡 = min

𝑢𝑡

𝑐 𝑥𝑡 , 𝑢𝑡 + 𝑉𝑡+1(𝐹 𝑥𝑡 , 𝑢𝑡 ) 

Forward pass, given nominal 𝒖:

𝑥1 = 𝐹 𝑥0, 𝑢0
𝑥2 = 𝐹 𝑥1, 𝑢1
𝑥3 = 𝐹(𝑥2, 𝑢2)

… 
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Same as we’re used to, 
just simpler because of 
no stochasticity

Same as in gradient descent



Differential Dynamic Programming (DDP)

Consider the usual Q functions, but now centered around nominal 
trajectory. So the input is a difference with respect to the nominal:

𝑄𝑡 𝜕𝑥𝑡 , 𝜕𝑢𝑡 = 𝑐(𝑥𝑡 + 𝜕𝑥𝑡, 𝑢𝑡 + 𝜕𝑢𝑡) + 𝑉𝑡+1 𝐹 𝑥𝑡 + 𝜕𝑥𝑡 , 𝑢𝑡 + 𝜕𝑢𝑡

The 2nd order Taylor expansion of 𝑄𝑡 is:

𝑄𝑡 𝜕𝑥𝑡 , 𝜕𝑢𝑡 ≈
1

2

1
𝜕𝑥𝑡

𝜕𝑢𝑡

𝑇
0 𝑀𝑥

𝑇 𝑀𝑢
𝑇

𝑀𝑥 𝑀𝑥𝑥 𝑀𝑥𝑢

𝑀𝑢 𝑀𝑢𝑥 𝑀𝑢𝑢

1
𝜕𝑥𝑡

𝜕𝑢𝑡
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Each submatrix 𝑀 can be 
computed from step t+1 
quantities!  



Differential Dynamic Programming (DDP)

If 𝑄𝑡 𝜕𝑥𝑡 , 𝜕𝑢𝑡  is quadratic (which we are ensuring), then:

1. The optimal control modification is linear (affine):

𝜕𝑢𝑡
∗(𝜕𝑥𝑡) = argmin𝜕𝑢𝑡

 𝑄𝑡 𝜕𝑥𝑡 , 𝜕𝑢𝑡 = 𝑘 + 𝐾𝜕𝑥𝑡

2. The value function is quadratic (not shown)

This is what ensures the backward pass does not “blow up”!
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Differential Dynamic Programming (DDP)

• Forward and backward pass can be repeated iteratively

• Updating nominal 𝒖 after each iteration

• These iterations are Newton-Raphson steps
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DDP Summary

1. It’s like dynamic programming from finite-horizon MDP land...
2. But instead of tabular value functions, we have quadratic ones
3. The quadratic functions are derived approximately from 2nd 

order Taylor expansions of the Q functions
4. So it’s really just Newton’s method + DP!
5. Remember: if the underlying system is nonlinear, this all could 

be terrible…
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DDP → iLQR
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What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

Sometimes lower-order methods approximate higher-order ones

Gauss-Newton (≈Newton)
→TrajOpt: iLQR (≈DDP)

Finite differences



iLQR → LQR

If the underlying dynamics are linear and costs are quadratic, then 
one step of iLQR is enough to get optimal performance

Similarly: Newton’s method finds global optimum in 1 step if 
function is quadratic

This is called LQR (Linear Quadratic Regulator)

Very well-studied system in control theory
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Bonus: adding 
Gaussian noise doesn’t 
really change anything 
(except the name: 
LQG)



Beware of Optimizing Iterated Functions

Shooting requires repeatedly composing:

𝑥1 = 𝐹 𝑥0, 𝑢0
𝑥2 = 𝐹 𝐹 𝑥0, 𝑢0 , 𝑢1
𝑥3 = 𝐹(𝐹 𝐹 𝑥0, 𝑢0 , 𝑢1 , 𝑢2)

... 

This can lead to very difficult optimization 
landscapes; issues like RNN training
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Figure from Roger Grosse (2017)



A Different Way….

Tom Silver - Princeton University - Fall 2025 50

What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Direct Transcription

min
𝒙,𝒖

 𝐶 𝒙, 𝒖  

subject to   𝑥𝑡+1 = 𝐹(𝑥𝑡 , 𝑢𝑡)
At first glance…
• Aren’t we just making the optimization harder?
• Now the optimizer needs to “figure out” the dynamics, too…

But maybe…
• We are giving the optimizer more freedom
• For example: it could find good future states

and then “reason backwards” to get actions
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Equality constraints

Optimizing states too!

Also: since we’re now doing 
constrained optimization, we 
could easily incorporate 
other constraints



Constrained Optimization

min
𝑧

 𝑓 𝑧  

subject to 𝑔𝑖 𝑧 = 0

 ℎ𝑗 𝑧 ≥ 0

• There are many methods for solving problems of this form
• As usual, restricting the function classes leads to better methods

• For now, we will assume access to a black-box solver
• In practice, we recommend SNOPT (via Drake)
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Equality constraints

Inequality constraints

Objective
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SNOPT on Pendulum
With final state constraint and torque costs
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Pretty impressive!



Peek Behind the Scenes

• SNOPT is a highly optimized version of sequential quadratic 
programming, a general method for constrained optimization

• SQP repeatedly creates a quadratic approximation of the 
objective around a nominal solution and then takes a Newton-
Raphson step (much like we saw in DDP!)

• To handle constraints, SQP uses the Lagrange:

ℒ 𝑥, 𝜆, 𝜎 = 𝑓 𝑥 + 𝜆ℎ 𝑥 + 𝜎𝑔(𝑥)
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𝜆 and 𝜎 are 
Lagrange multipliers

SNOPT also 
leverages sparsity 
of equations for 
efficiency, like 
DDP



TrajOpt with SNOPT
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What is optimized?

Actions
a.k.a. indirect or shooting

States and Actions
a.k.a. direct transcription or collocation

What derivatives (of dynamics and costs) are required?

Zero-order First-order Second-order

To what extent is the approach specific to trajectory optimization?

Not really at all Some A lot



Highest Level Takeaways

• Cast your trajectory optimization as general optimization

• But then leverage the trajectory structure to make computation 
more efficient (forward pass, backward pass, etc.)

• Use off-the-shelf optimization tools when possible
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Good References

• Russ Tedrake’s evolving notes: 
https://underactuated.mit.edu/trajopt.html 

• Sergey Levine’s lecture slides: 
https://rll.berkeley.edu/deeprlcoursesp17/docs/week_2_lecture
_2_optimal_control.pdf

• The MuJoCo MPC (Predictive Sampling) paper: 
https://arxiv.org/pdf/2212.00541 

• The constrained DDP paper: 
https://homes.cs.washington.edu/~todorov/papers/TassaICRA1
4.pdf 
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Let’s Play a Review Game

Bar trivia rules
• Break up into teams of 3-5
• Give your team a great name
• I will ask questions
• You will discuss quietly with your team
• Write down your answer
• Hold it up when I say so
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Question 1

What are the three kinds of MDP time horizons?
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Question 2

Suppose an MDP has N states, M actions, and for each state and 
action, there are at most K next states with nonzero probability.

 
What is the time complexity of one iteration of value iteration, 

assuming a good implementation?
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Question 3

Consider the following “code”:

def solve_infinite_horizon_mdp(mdp):

 finite_horizon_mdp = convert_to_finite_horizon(mdp)

 policy = solve_finite_horizon_mdp(finite_horizon_mdp)

 # Guaranteed optimal policy for original mdp

 return policy

Is there some implementation of convert_to_finite_horizon 
that would make this code correct?
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Question 4

Consider expectimax search in an MDP with 2 actions and 3 
possible next states for each (state, action) pair.

Suppose we run expectimax search to a horizon of H=5.

Assuming that there are no redundant states, so trees == 
AODAGs, how many Bellman backups would we perform in total?
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Question 5

Which of the following bandit exploration strategies are 
guaranteed to try all arms infinitely often in the limit?

1. Uniform random
2. Exploit only
3. Epsilon-greedy (for nontrivial epsilon)
4. UCB

You may select multiple.
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Question 6

Which of the following is true about MCTS, but not about RTDP?

1. Requires only simulator access to MDP
2. Focuses on “promising” parts of AODAG
3. Adds one new state node at each iteration
4. Backpropagates values after each iteration
5. Uses rollout heuristic to estimate leaf node values
6. Uses greedy policy to select nodes to expand 

You may select multiple.
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Question 7

What is the time complexity of one step of state estimation for 
POMDPs?
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Question 8

Describe a POMDP with 2 states and 2 observations where the 
corresponding Belief MDP has an infinite number of reachable 
states given any initial observation. Or explain why this is 
impossible.
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Question 9

True or false: in classical planning, given an optimal heuristic, the 
number of nodes expanded by A* is equal to the number of 
actions in the output plan.
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Question 10

Describe how one might use some of the trajectory optimization 
techniques we saw today to solve the motion planning problems 
that we saw last class. Write down key bullet point ideas, 
including how we would do this and why/when it would work well 
or not.
We’ll use the “best” answer to break any ties!
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