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Let’s Play a Review Game

Bar trivia rules

* Break up into teams of 3-5

* Give your team a great name

* | will ask questions

* You will discuss quietly with your team
* Write down your answer

* Hold it up when | say so



Question 1 inh < | Gl

What is the expected number of
nodes that RRT will create in
the example on the right?

Square Obstacle

1. Less than 5 Side Length: 2 inches
2. Between 5 and 25

3. Between 25 and 100

4. Greater than 100 / no limit
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Question 2

Consider a POMDP with 2 states, 2 observations, and 2 actions.
Suppose that our initial belief state is uniform.

|s it possible that the corresponding Belief MDP has an infinite
number of reachable states?



Question 3

True or False: if a POMDP has a deterministic transition
distribution and a deterministic observation distribution, then
there exists some policy for the agent that would lead to an
absolutely certain belief state (some state has 100%).



Question 4

True or False: for any classical planning problem, if a solution
exists, then a solution also exists in the delete relaxed problem.



Question 5

True or false: in classical planning, given an optimal heuristic, the
number of nodes expanded by A* is equal to the number of
actions in the output plan.



Question 6
Which of the following is true about MCTS, but not about RTDP?

Requires only simulator access to MDP

Focuses on “promising” parts of AODAG

Adds one new state node at each iteration
Backpropagates values after each iteration

Uses rollout heuristic to estimate leaf node values
Uses greedy policy to select nodes to expand

S A

You may select multiple.



Question /

Which of the following bandit exploration strategies are
guaranteed to try all arms infinitely often in the limit?

Uniform random

Exploit only

Epsilon-greedy (for nontrivial epsilon)
UCB

=

You may select multiple.



Question 8

|s there any bug in this
code, and if so, which
line?

Tom Silver

def value_iteration(
states: List[State],
actions: List[Action],
transitions: Dict[Tuple[State, Action], List[Transition]],
gamma: float = 0.95,
theta: float = le-6,

) -> Dict[State, float]:
"""Returns state values.
V={s: 0.0 for s in states}

while True:
delta = 0.0
for s 1n states:
g_values = []
for a in actions:
exp_return = 0.0
for p, s_next, r in transitions[(s, a)l:
exp_return += p * r + gamma * V[s_next]
g_values.append(exp_return)

v_new = max(q_values) if q_values else V[s]
delta = max(delta, abs(v_new - V[s]))
V[s] = v_new

if delta < theta:
break

return V




Question 2

What are the three kinds of MDP time horizons?



Question 10 (Tiebreak)

List any algorithms we have covered in this course. The most
recalled wins.
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Recap and Preview

Last time: planning in continuous state and action spaces

This time: same problem setting, new tools: abstractions!




Human Demo
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Random Actions
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Task Distribution
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Which planners could we
Exa mple try? Would they work?

State space: Robot config, block pose
(8D)

Action space: Pose change, vacuum (5D)

Transition function: Apply action but
disallow collisions (no change)

Cost function: -1 until block on target



A Two-Level Hierarchy




A Two-Level Hierarchy

Abstract state space

State abstraction
models




A Two-Level Hierarchy

F:

)
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Abstract state space

Abstract action space

Abstract transition model
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A Two-Level Hierarchy
F:|d A )

| Abstract action space
LIJ H LIJ Action abstraction
models
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A Two-Level Hierarchy

F:

)

A

Y

10 Maybe it’s easier

| to plan up here!

Y

X




Abstractions in Example |:|

HoldingBlock: bool “pick”
BlockOnTarget: bool 5 “place”‘ﬂ 19
State abstraction | Y [] Action refinement

Robot config, block pose X —.—' X _._’ X

Pose change, vacuum (5D)
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State Abstraction with Predicates

OnTable(b2), On(b4, b2) def classifyOnTable(state, ?block):
Abstract state OnTable(b@), On(bl, bo) state[?block].z < 1le-5
5 OnTable(b3)

def classifyOn(state, ?top, ?bot):
(state[?top].z - state[?bot].z -
state[?bot].size) < le-5 &
(state[?top].x - state[?bot].x) < le-5 &
(state[?top].y - state[?bot].y) < le-5 &

063 011 0.94
b0 074 011 000 01
State bl 075 010 020 01
b2 050 0.11 000 01
b3 099 012 000 01
b4 051 011 0.20 01




Operators as Abstract Actions

Arguments

List of typed variables

Preconditions

What must be true in order
to use this operator?

Ad
I_

d/Delete Effects
ow is the abstract state

C

hanged by this operator?

Tom Silver - Prince

Operator-PickFromTable:
Arguments: [?b - block, ?r - robot]

Preconditions: {GripperOpen(?r),
OnTable(?b)}

Add effects: {Holding(?b)}
Delete effects: {GripperOpen(?r),
OnTable(?b)}
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An Abstract Transition Model

Abstract state s,

Abstract state s;

Abstract state s,

Abstract state s;

An abstract (partial) transition model

Tom Silver - Princeton University - 2025

28



Why Predicates and Operators?

If we have predicates and operators, then we can use
very powerful off-the-shelf symbolic planners!

i Al |

][]

Blocks World Sokoban Hanoi
Plan length: 28 Plan length: 167 Plan length: 579
Planning time: 0.12 s Planning time: 0.25 s Planning time: 0.22 s

Planning with Fast Downward ( )
Rendering and simulation with PDDLGym ( )
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https://www.fast-downward.org/
https://www.fast-downward.org/
https://www.fast-downward.org/
https://github.com/tomsilver/pddlgym
https://github.com/tomsilver/pddlgym
https://github.com/tomsilver/pddlgym




Policies as Abstract Action Models

State Action def policyPickFromTable(state, ?b, ?r):
dx = (state[?b].x - state[?r].x)
dy = (state[?b].y - state[?r].y)
dz = (state[?b].z - state[?r].z)

Parameters
return [dx, dy, dz]
Same as . -
operator Simplified example

The policy should achieve the operator effects
when the operator preconditions hold



Example Policy Executions

PickFromTable(block2, robby)
Abstract State:

PickFromTable(block1, robby)
Abstract State:

Clear(blockO Clear(blockO

Cleargblock1 Cleargblock1

Clear(block2 Clear(block2
GripperOpen(robby) GripperOpen(robby)
OnTable(blockO OnTable(blockO &
OnTable(block1 OnTable(block1
OnTable(block2 OnTable(block2

Tom Silver - Princeton University - 2025
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Skills: abstract actions that bring the robot
from one abstract state to another

A skill has an operator and a policy




Classical Planner

Goal g
i ,

Abstract state s,

n
~
—— | — 1

Initial state x,

N I S S - -
i

Action abstraction via skills
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Unstack(block4, block3, robby)

Abstract State:
Clear(block4

GripperOpen(robby)

On(block1, blockO
On(block2, block1
On(block3, block2
On(block4, block3
OnTable(block0)

Tom Silver - Princeton University - 2025
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“Deep Affordance Foresight: Planning Through What Can Be Done in the Future.” Danfei Xu, Ajay Mandlekar, Roberto
Martin-Martin , Yuke Zhu, Silvio Savarese and Li Fei-Fei. ICRA 2021.
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Operator-PushOutOfTube:

Arguments: [ T, .2 , ]

Preconditions: {Holding( [ ,.%.),
InTube (@)}

Add effects: {OutOfTube ()
Delete effects: {InTube (@)}

e
=%

Tom Silver | Princeton | 2025
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Possible Conclusions from this Example

1. Insufficient predicates — learn new predicates

HoldingBottom, HoldingTop, etc.

2. Insufficient policies = learn better policies

Put down the tool and regrasp if needed

. Insufficient planner = be less trusting of the abstractions

View abstractions as guidance for low-level planning

Tom Silver | Princeton | 2025
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Bilevel Planning: View Abstractions as Constraints

Goal g

|

Abstract state s,

Predicates

Initial state x,

Symbolic Planner

Abstract state s; Abstract state s,

Find states x, x,, x,, ... and actions u,, u,, ... so that
1. abstract(x;) =s,,, [abstract states are followed]
2. f(x., u)=x [transitions are valid]

1
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Logic-Geometric Programming

Toussaint (2015)

Found Solutions The dautie Heon, In sntlogy 10 Dary o Crew
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Side Note: Constraints Can Help Planning in Multiple
Ways

From Chitnis*, Silver*, et al. (2020)

Tom Silver | Princeton | 2025
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Logic-Geometric Programming

Toussaint (2015)

Possible issues:

1. Optimizing in low-level state and action space remains hard for
long-horizon problems



Recall from last lecture

General Trick 2: Optimize Splines Instead

Optimizing (uy, U4, ..., uy_q1) is slow for large H
Instead, optimize over lower-dimensional «a:

u, = f(t, @) where ¢ € R* and d « mH

Common: think of a as “action waypoints” and
interpolate between them

For example, linear splines (see right)



Parameterized Skill Policies

Operator-PickTool:

Arguments: [ [, 2. ]

Preconditions: {GripperOpen( ,-.L) }

Add effects: {Holding( [ ,.%.)
Delete effects: {GripperOpen(,£.)}

Tom Silver | Princeton | 2025
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Symbolic Planner

| |

PickTool PushOutOfTube

Goal g :l—v
Skills

\ 4
A

Abstract state s,

Predicates

A

Policy

Initial state x, us *ﬁ—» X, | | u, *ﬁ—»
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Symbolic Planner

| |

Goal g :l—v
Skills

PickTool S; PushOutOfTube

\ 4
A

Abstract state s,

Predicates

A

Policy

Initial state x, us *ﬁ—» X, | | u, *ﬁ—»
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Logic-Geometric Programming

Toussaint (2015)

Possible issues:

1. Optimizing in low-level state and action space remains hard for
long-horizon problems

2. We still may have “contract disputes”...



The abstractions may be
pathological liars...

An abstract plan may not be
refinable at all!



Abstract Plan

Grasp handle
Place on plate

Turn plate on

Pick up pot

Pour into cup

Coffee Domain
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N e Coffee Domain

Abstract Plan

x Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup
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Abstract Plan

Rotate pot
Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup

Coffee Domain
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One Remedy: Try Multiple Abstract Plans

Symbolic Planner

Goalg H———

|

Abstract state s, Abstract state s; Abstract state s,

Find states x, x,, x,, ... and actions u,, u,, ... so that

Predicates

1. abstract(x;) =s,,, [abstract states are followed]

2. f(x., u)=x [transitions are valid]

1

Initial state x,
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Better: Use Feedback from Refinement

Failure to Influence Task Planning

Example: “Navigation Among
Moveable Obstacles (NAMO)”

(Stilman & Kuffner 2004)

(Simplified explanation)

When a collision is encountered
during refinement, make a plan

to move the collided object out
of the way first

Tom Silver | Princeton | 2025



Another Approach: Sample then Search

« Extends ideas from sample-based motion planning (RRT, PRM)

 [nstead of sampling just robot configurations, sample...

« Candidate grasps
» Candidate positions of objects

« Sample in a factored and conditional way
« Example: conditioned on a future object position, sample a grasp
» Conditioned on a grasp, sample a robot base position
« Can sample “forward”, “backward”, or any-which-way in time

e See: PDDLStream (Garrett et al. 2018)



Summary: Task and Motion Planning (TAMP)

* Plan with state and action abstractions

« Use relational abstractions (e.g., PDDL) when possible

« Beware that the abstractions might be “liars”
 TAMP is most interesting in this case!

« Use the abstractions as “guidance” for planning

* Closely related to hierarchical RL
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