

Planning with Hierarchy and Abstraction

Tom Silver

Robot Planning Meets Machine Learning

Princeton University

Fall 2025

Let's Play a Review Game

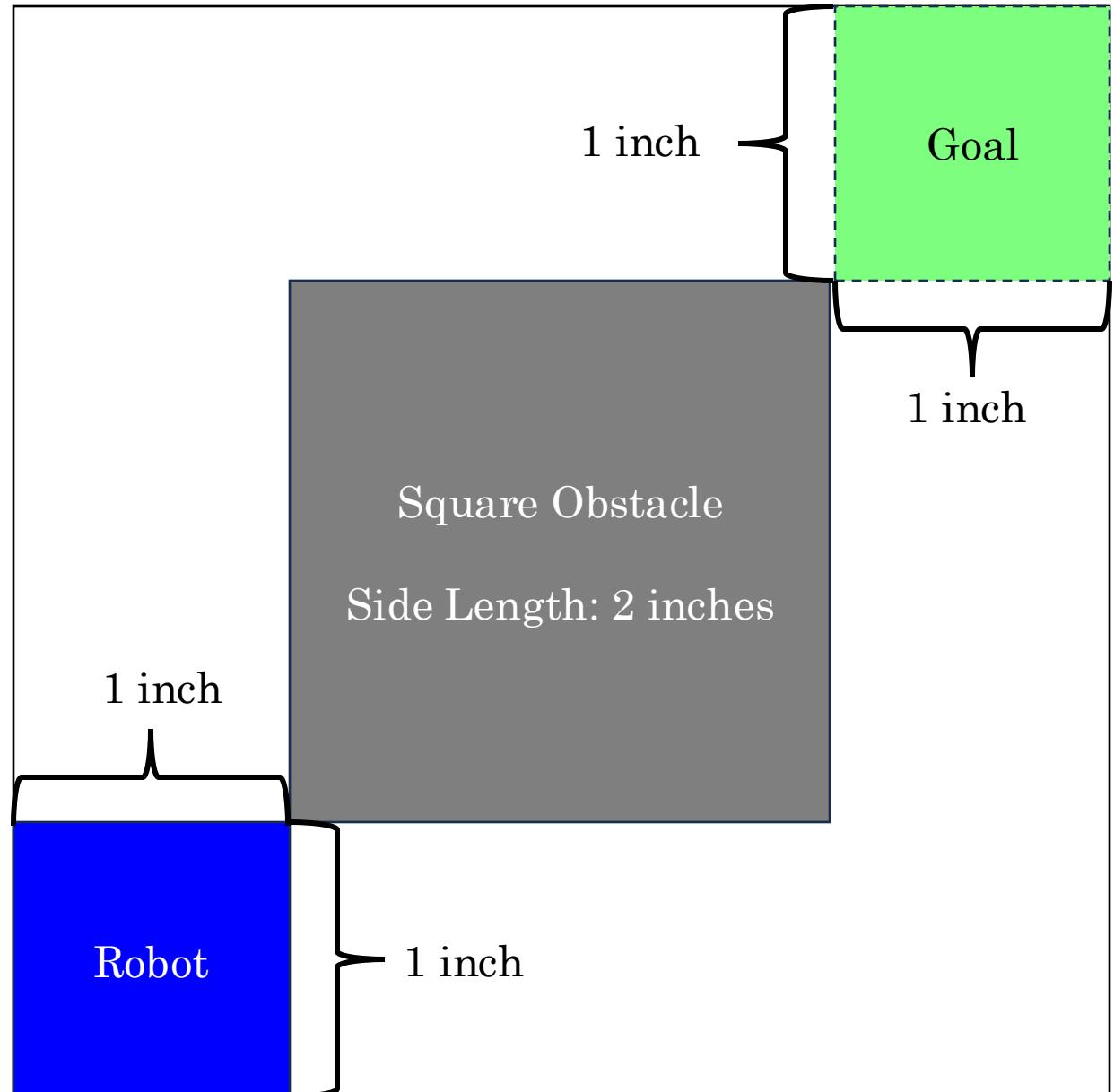
Bar trivia rules

- Break up into teams of 3-5
- Give your team a great name
- I will ask questions
- You will discuss quietly with your team
- Write down your answer
- Hold it up when I say so

Question 1

What is the expected number of nodes that RRT will create in the example on the right?

1. Less than 5
2. Between 5 and 25
3. Between 25 and 100
4. Greater than 100 / no limit



Question 2

Consider a POMDP with 2 states, 2 observations, and 2 actions.

Suppose that our initial belief state is uniform.

Is it possible that the corresponding Belief MDP has an infinite number of reachable states?

Question 3

True or False: if a POMDP has a deterministic transition distribution and a deterministic observation distribution, then there exists some policy for the agent that would lead to an absolutely certain belief state (some state has 100%).

Question 4

True or False: for any classical planning problem, if a solution exists, then a solution also exists in the delete relaxed problem.

Question 5

True or false: in classical planning, given an *optimal* heuristic, the number of nodes *expanded* by A* is equal to the number of actions in the output plan.

Question 6

Which of the following is true about MCTS, but not about RTDP?

1. Requires only simulator access to MDP
2. Focuses on “promising” parts of AODAG
3. Adds one new state node at each iteration
4. Backpropagates values after each iteration
5. Uses rollout heuristic to estimate leaf node values
6. Uses greedy policy to select nodes to expand

You may select multiple.

Question 7

Which of the following bandit exploration strategies are guaranteed to try all arms infinitely often in the limit?

1. Uniform random
2. Exploit only
3. Epsilon-greedy (for nontrivial epsilon)
4. UCB

You may select multiple.

Question 8

Is there any bug in this code, and if so, which line?

```
1 def value_iteration(
2     states: List[State],
3     actions: List[Action],
4     transitions: Dict[Tuple[State, Action], List[Transition]],
5     gamma: float = 0.95,
6     theta: float = 1e-6,
7 ) -> Dict[State, float]:
8     """Returns state values."""
9     V = {s: 0.0 for s in states}
10
11    while True:
12        delta = 0.0
13        for s in states:
14            q_values = []
15            for a in actions:
16                exp_return = 0.0
17                for p, s_next, r in transitions[(s, a)]:
18                    exp_return += p * r + gamma * V[s_next]
19                    q_values.append(exp_return)
20
21        v_new = max(q_values) if q_values else V[s]
22        delta = max(delta, abs(v_new - V[s]))
23        V[s] = v_new
24
25        if delta < theta:
26            break
27
28    return V
```

Question 9

What are the three kinds of MDP time horizons?

Question 10 (Tiebreak)

List any algorithms we have covered in this course. The most recalled wins.

Planning with Hierarchy and Abstraction

Tom Silver

Robot Planning Meets Machine Learning

Princeton University

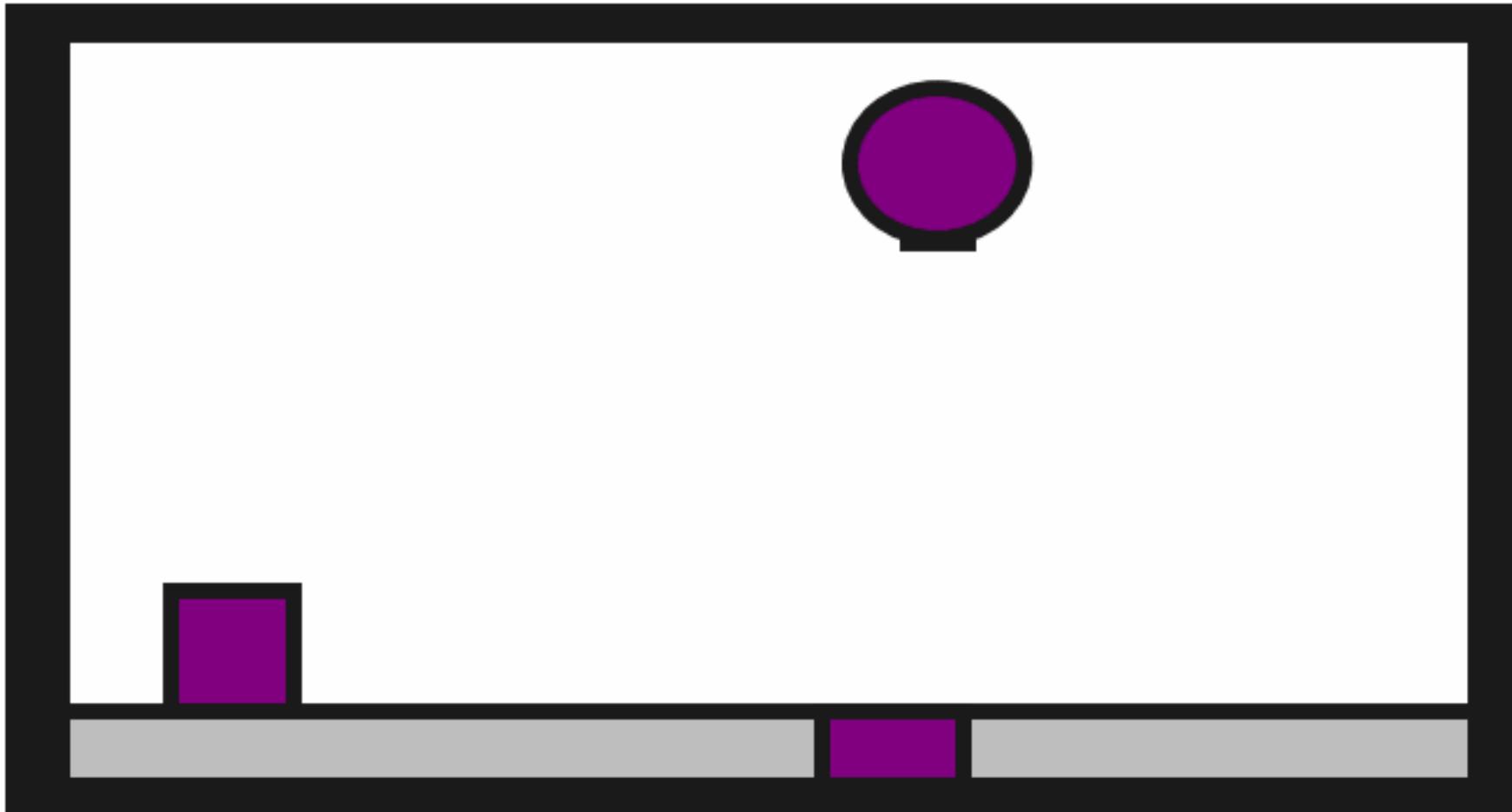
Fall 2025

Recap and Preview

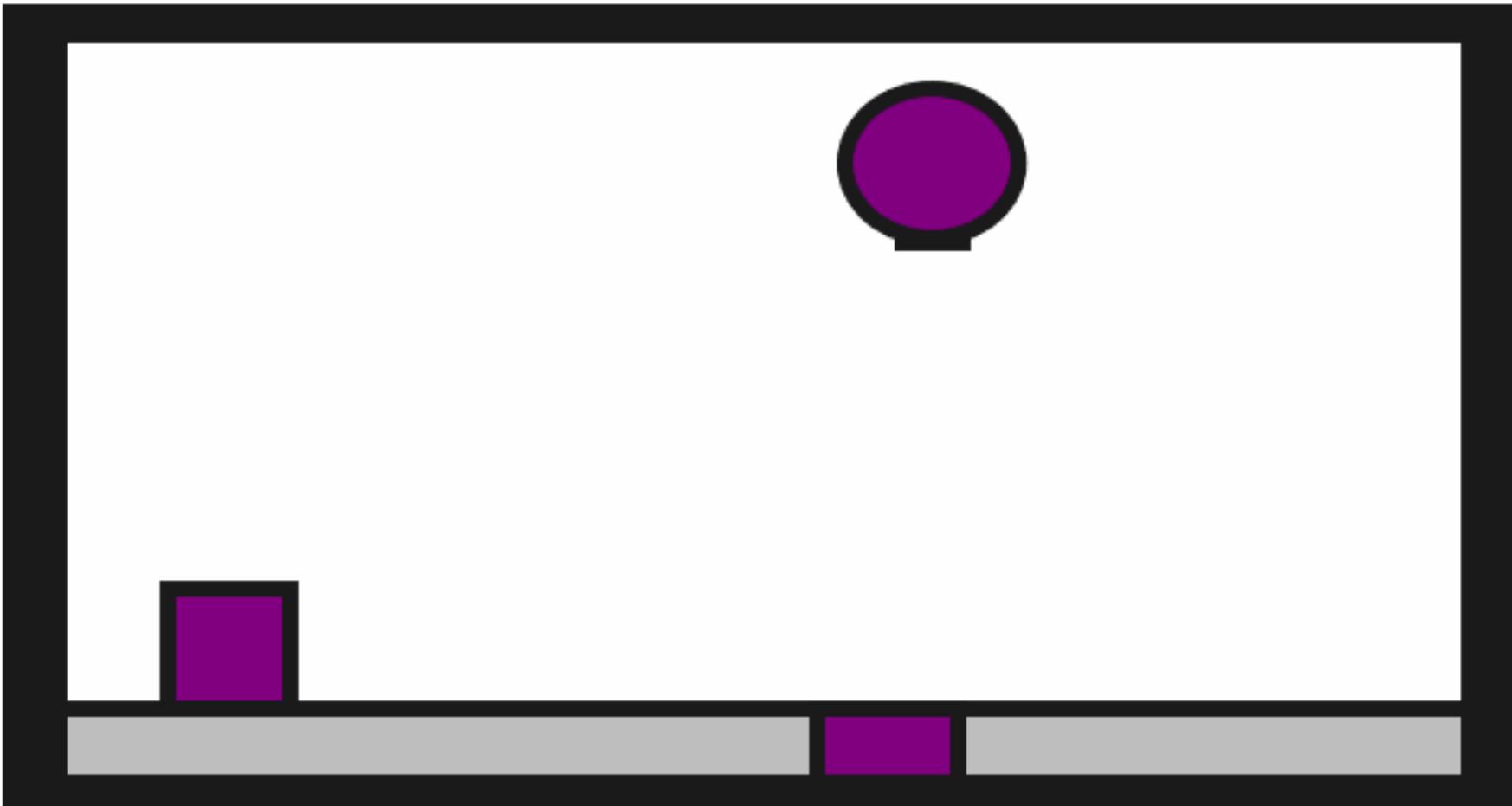
Last time: planning in continuous state and action spaces

This time: same problem setting, new tools: abstractions!

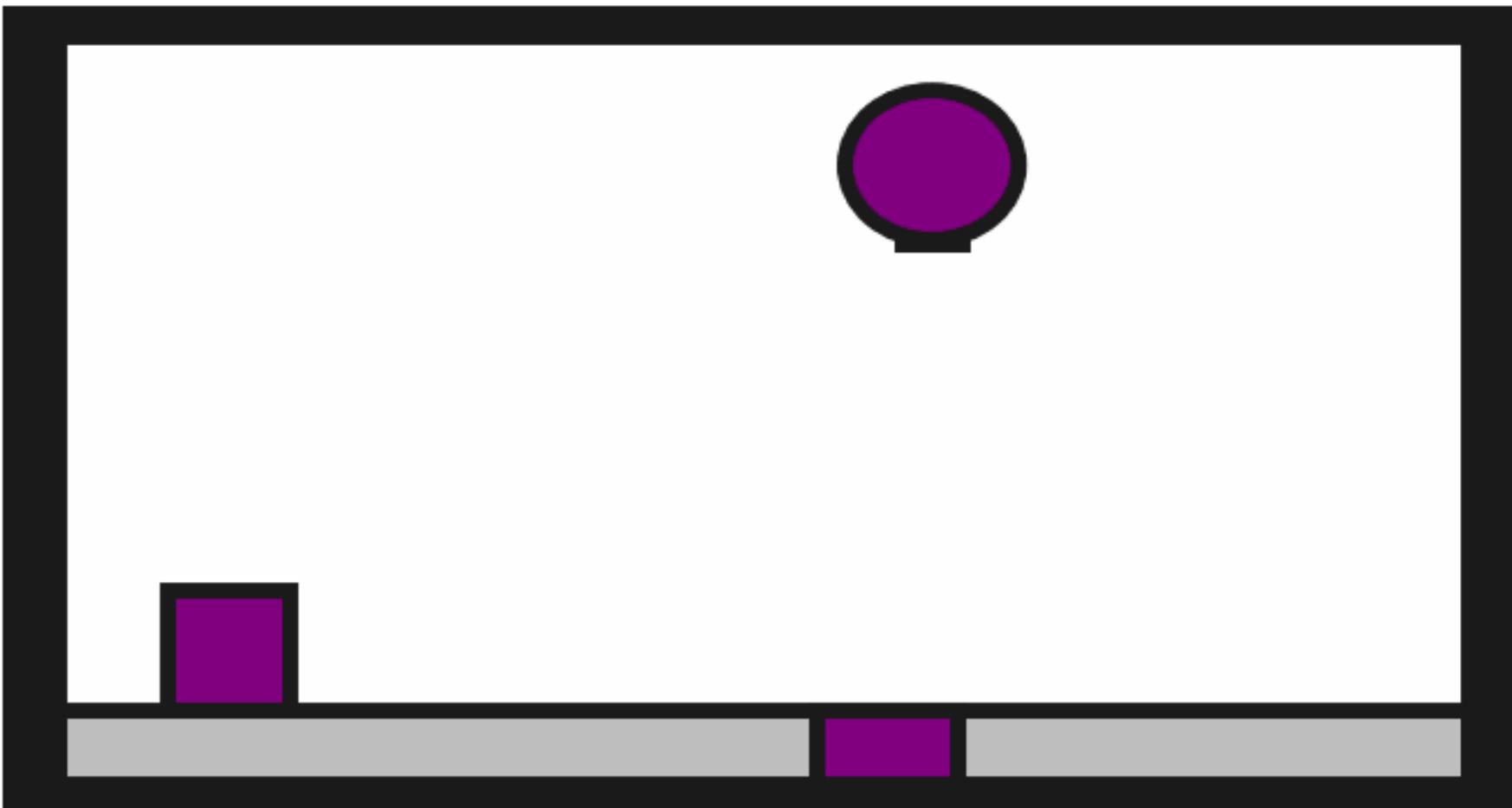
Human Demo



Random Actions



Task Distribution



Example

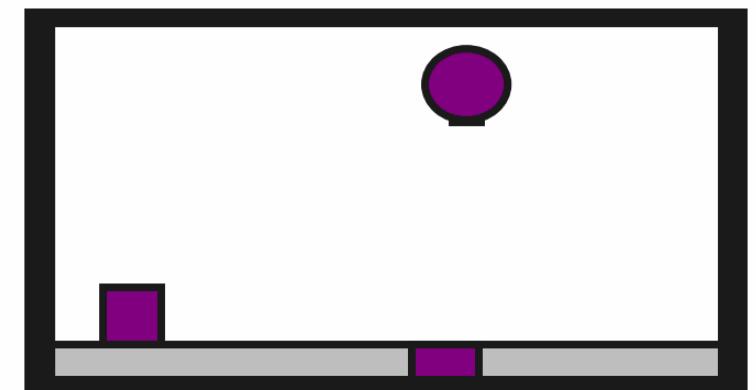
Which planners could we try? Would they work?

State space: Robot config, block pose (8D)

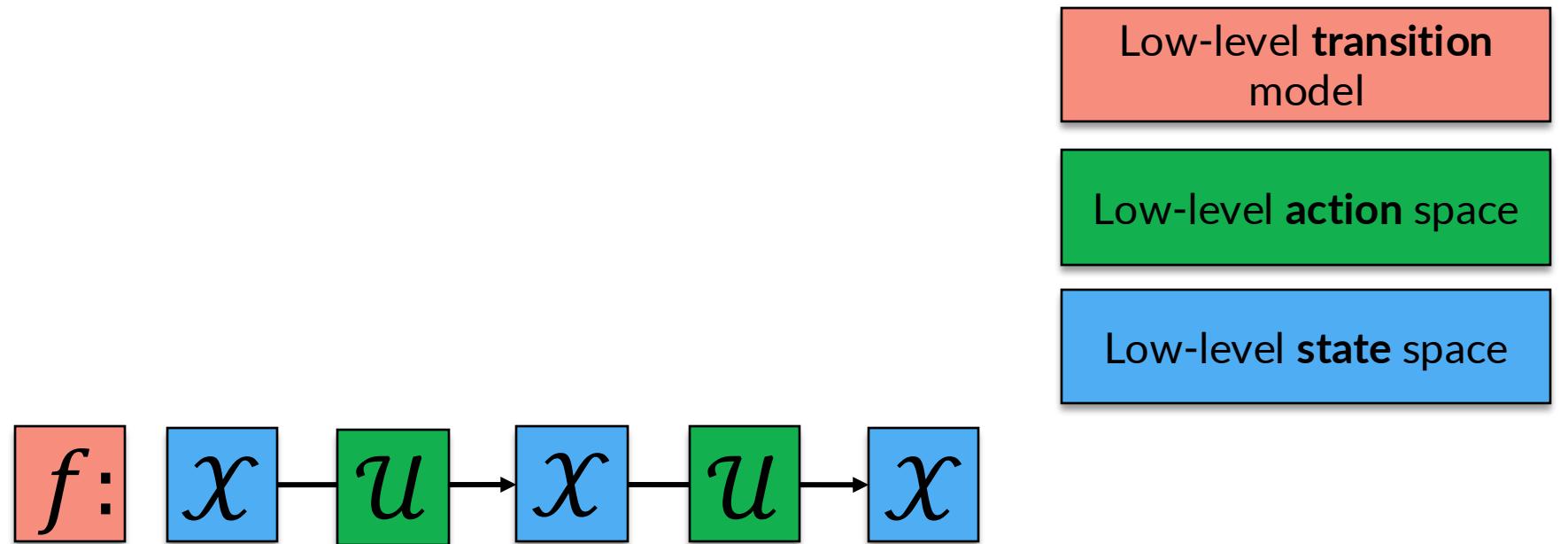
Action space: Pose change, vacuum (5D)

Transition function: Apply action but disallow collisions (no change)

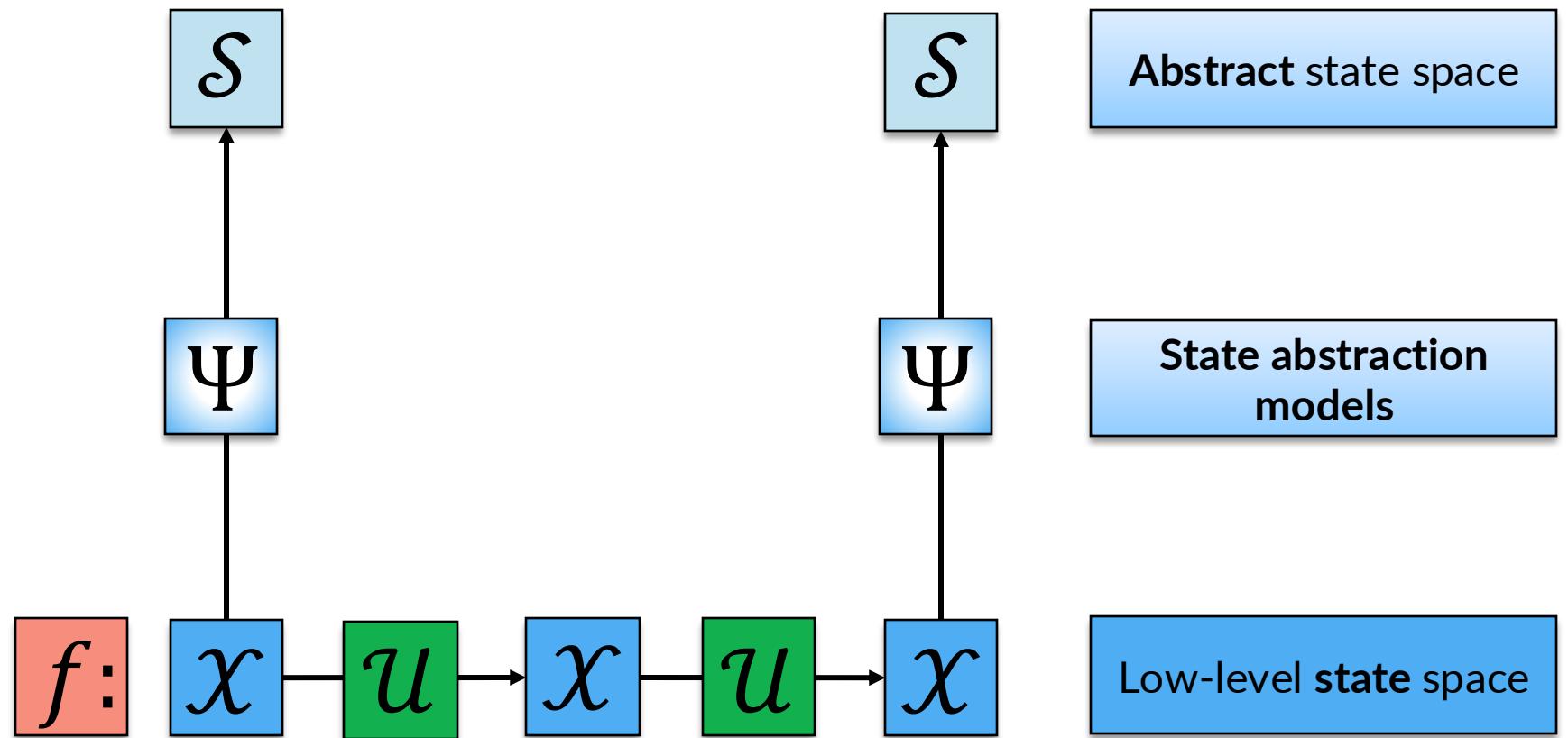
Cost function: -1 until block on target



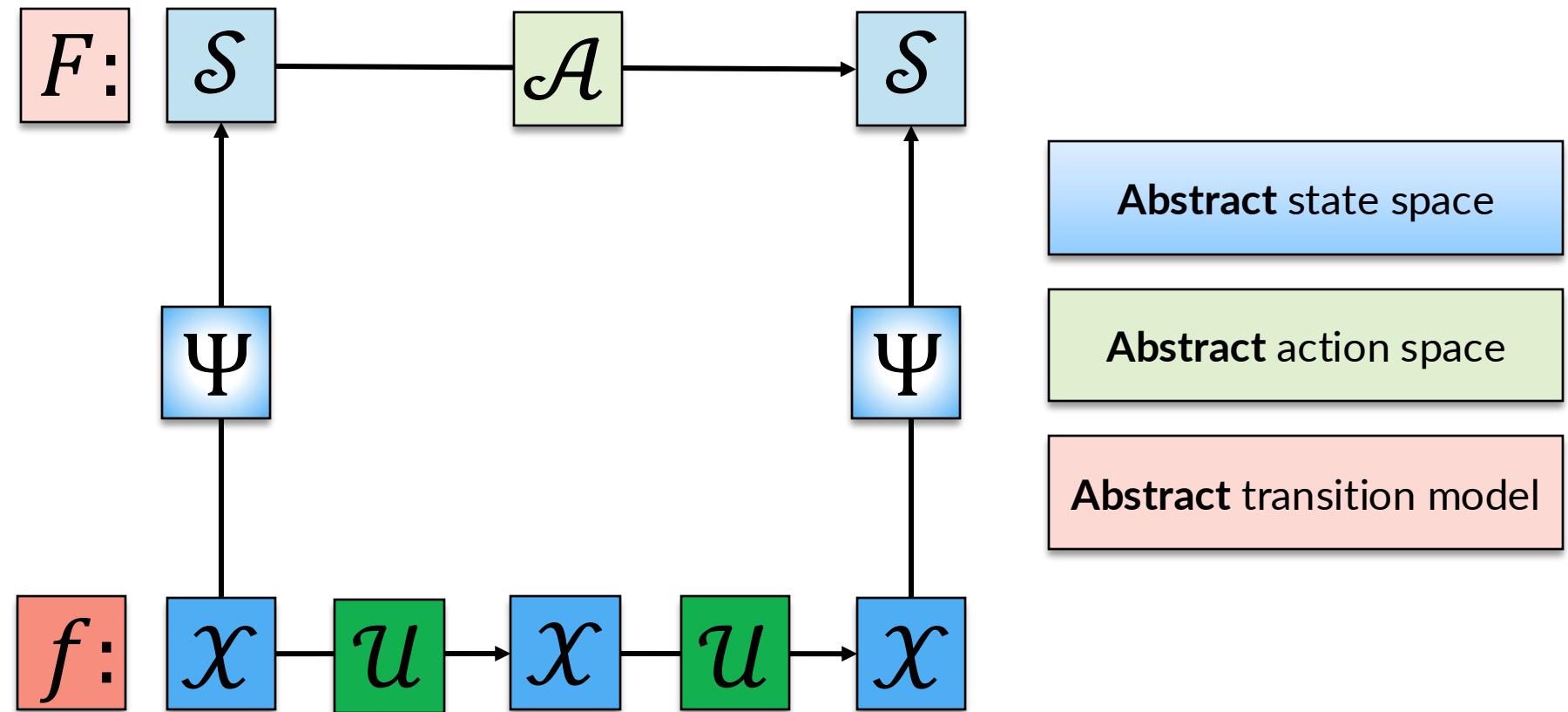
A Two-Level Hierarchy



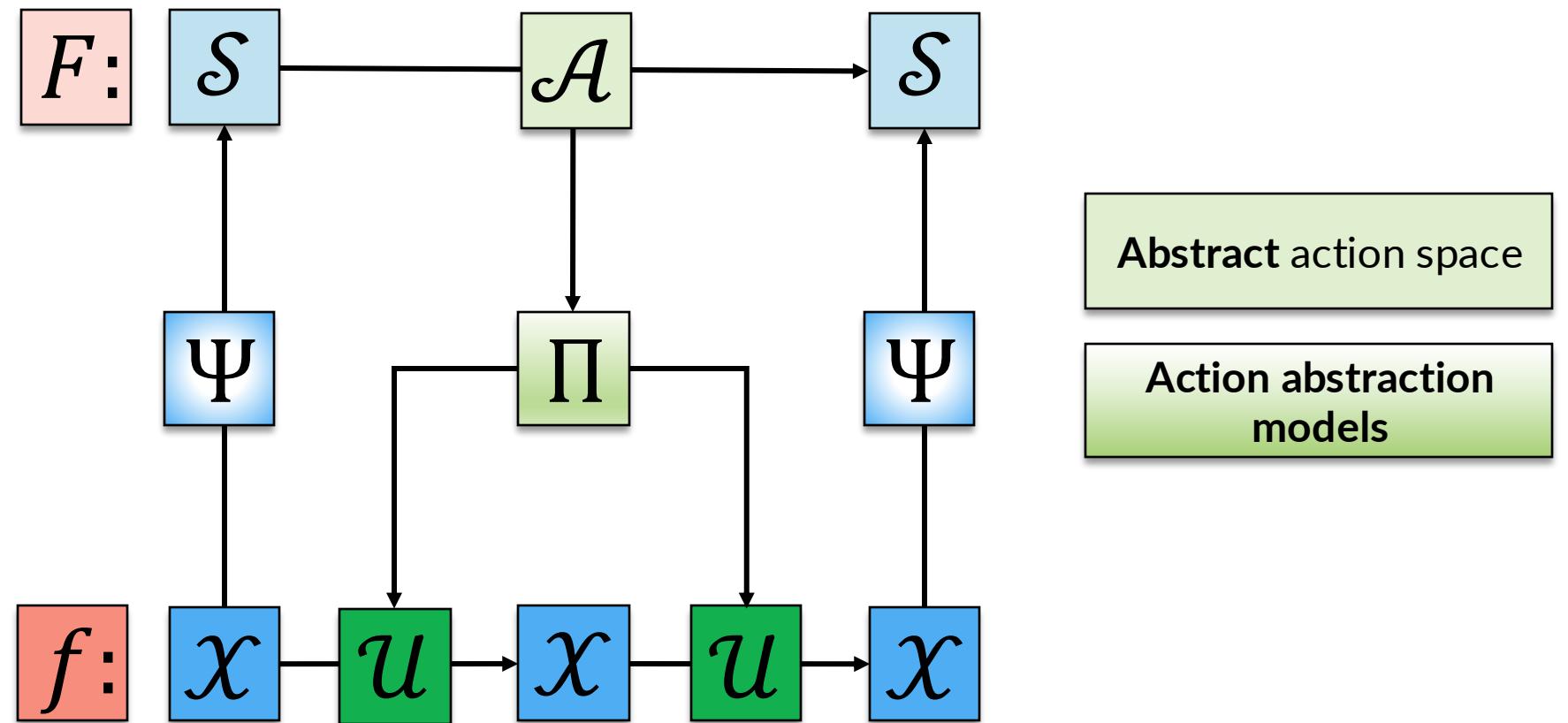
A Two-Level Hierarchy



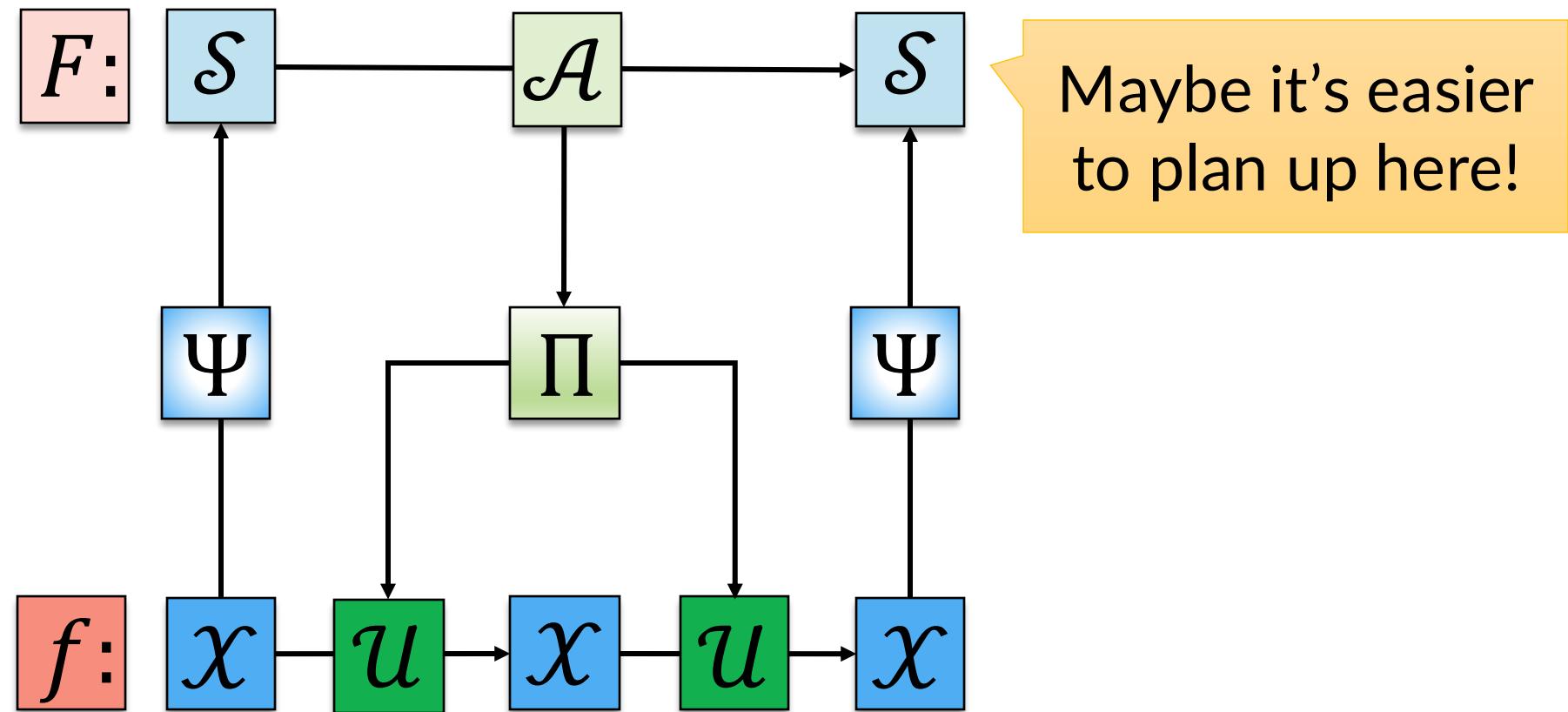
A Two-Level Hierarchy



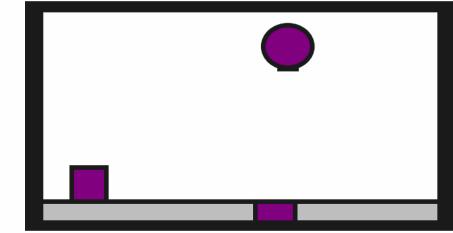
A Two-Level Hierarchy



A Two-Level Hierarchy



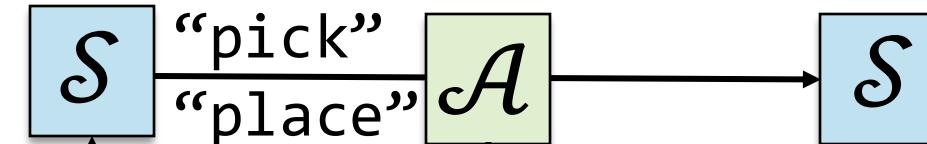
Abstractions in Example



HoldingBlock: bool
BlockOnTarget: bool

State abstraction

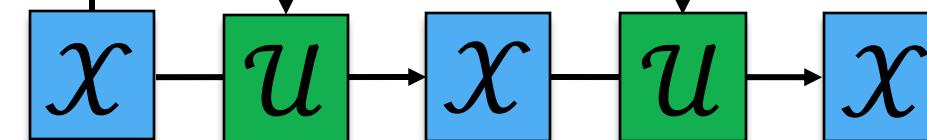
Robot config, block pose



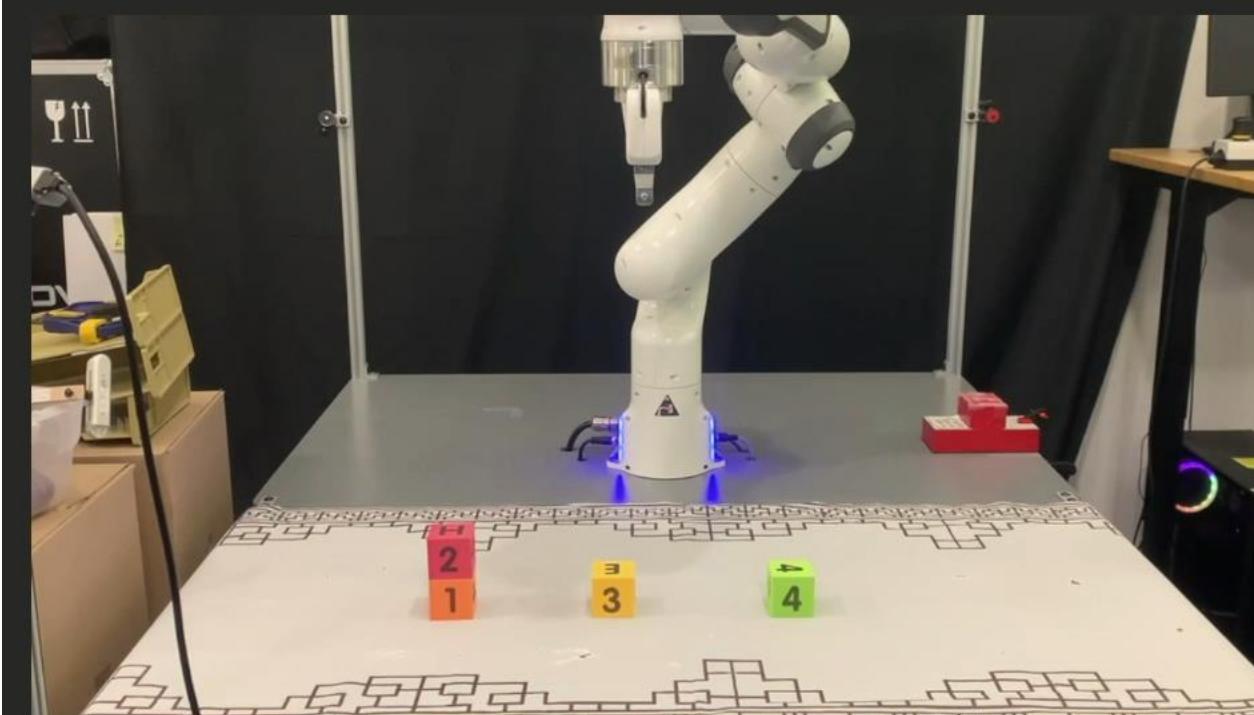
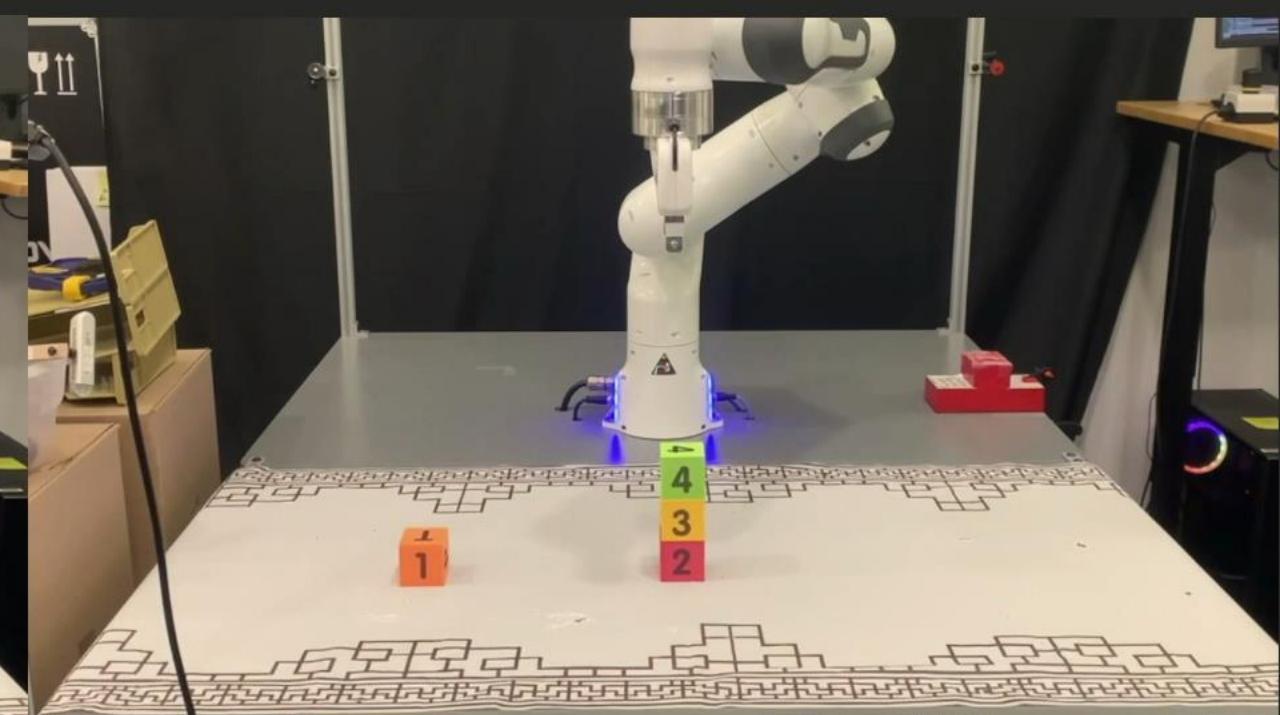
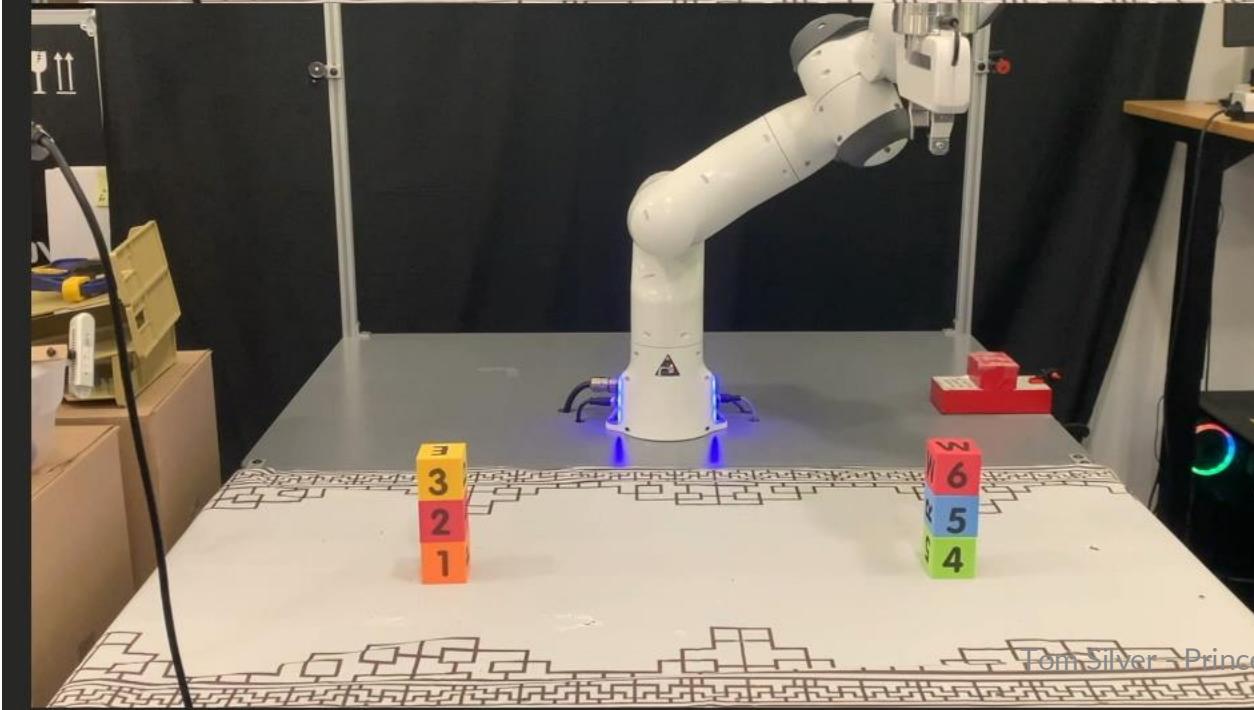
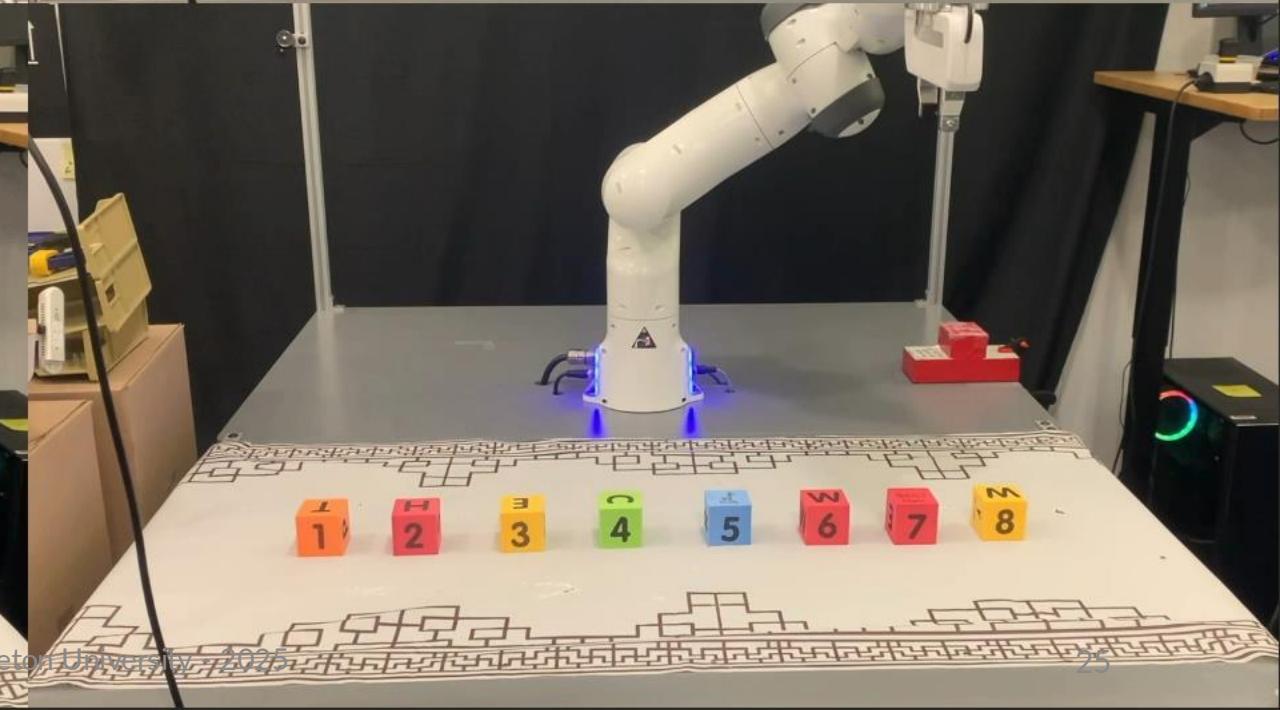
Ψ

Π

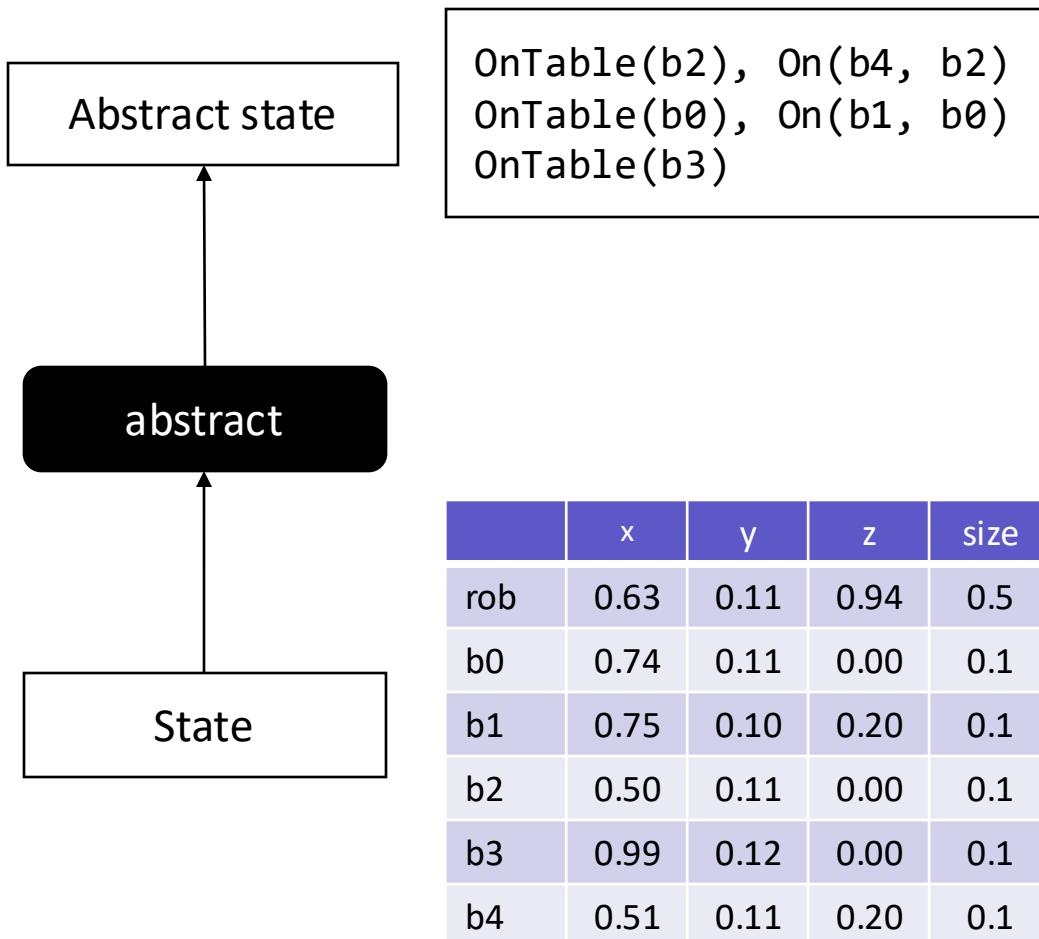
Action refinement



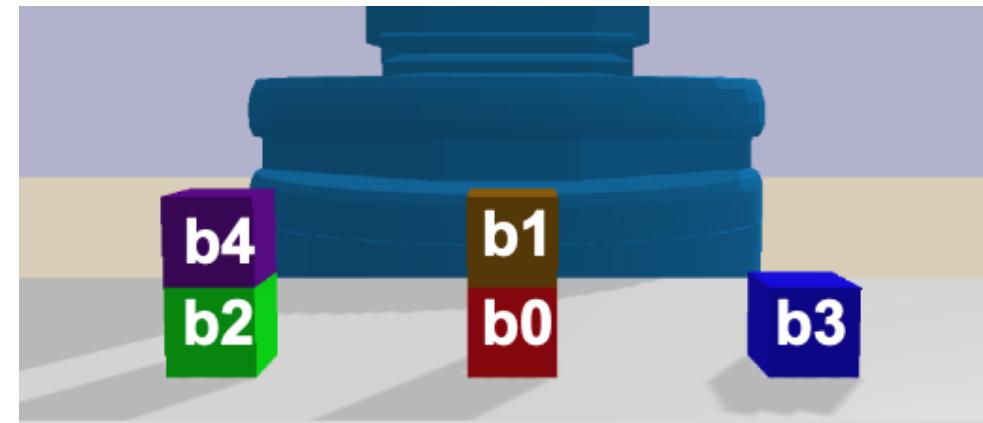
Pose change, vacuum (5D)



State Abstraction with Predicates



```
def classifyOnTable(state, ?block):  
    state[?block].z < 1e-5  
  
def classifyOn(state, ?top, ?bot):  
    (state[?top].z - state[?bot].z -  
     state[?bot].size) < 1e-5 &  
    (state[?top].x - state[?bot].x) < 1e-5 &  
    (state[?top].y - state[?bot].y) < 1e-5 &
```



Operators as Abstract Actions

Arguments

List of typed variables

Preconditions

What must be true in order to use this operator?

Add/Delete Effects

How is the abstract state changed by this operator?

Operator-PickFromTable:

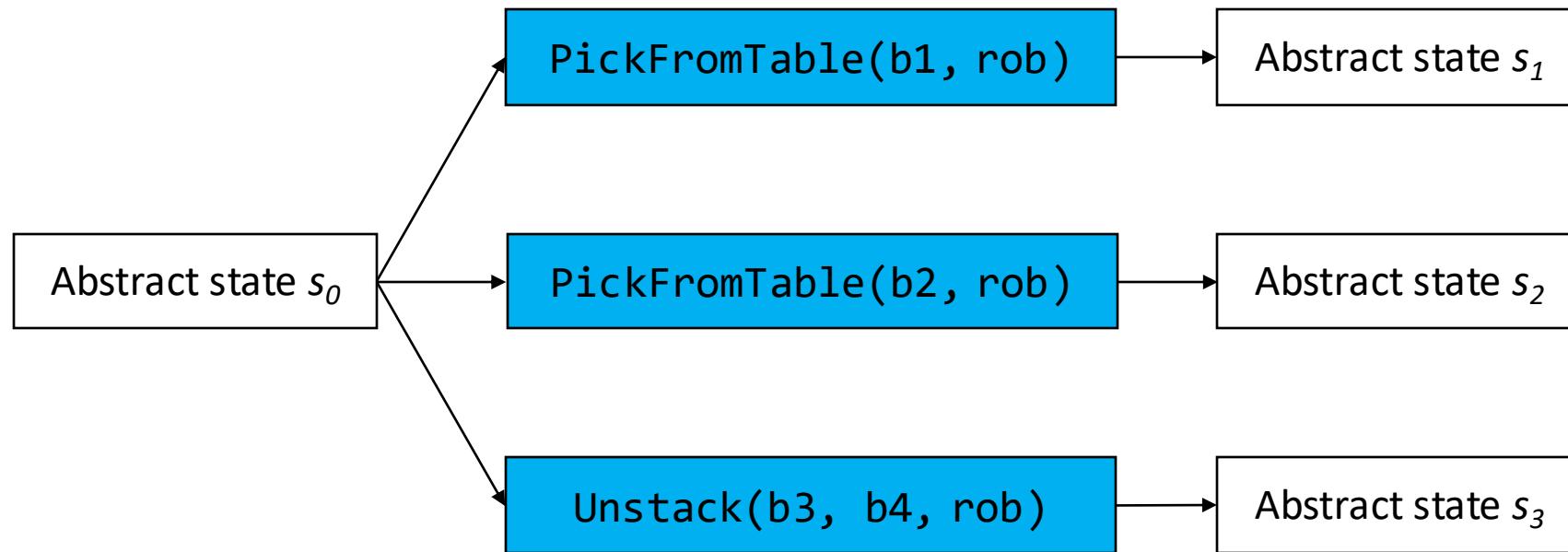
Arguments: [?b - block, ?r - robot]

Preconditions: {GripperOpen(?r), OnTable(?b)}

Add effects: {Holding(?b)}

Delete effects: {GripperOpen(?r), OnTable(?b)}

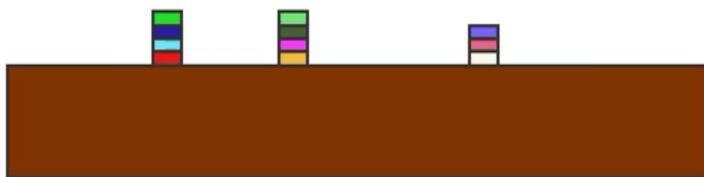
An Abstract Transition Model



An abstract (partial) transition model

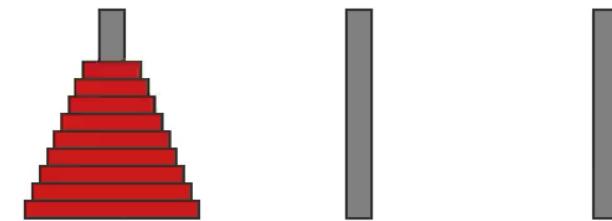
Why Predicates and Operators?

If we have predicates and operators, then we can use very powerful off-the-shelf symbolic planners!



Blocks World
Plan length: 28
Planning time: 0.12 s

Sokoban
Plan length: 167
Planning time: 0.25 s

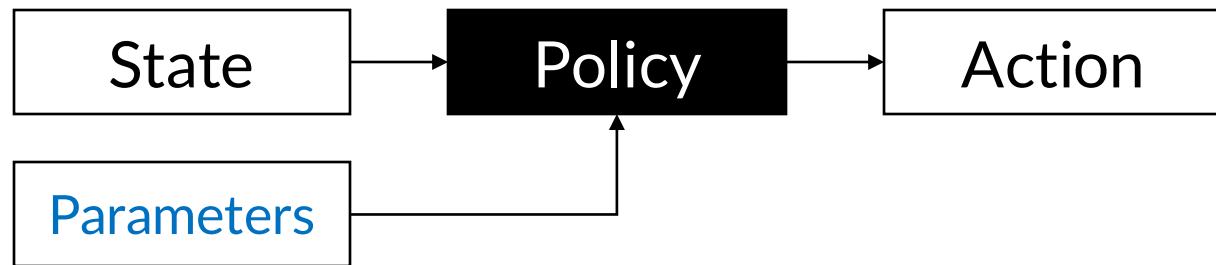


Hanoi
Plan length: 579
Planning time: 0.22 s

Planning with Fast Downward (<https://www.fast-downward.org>)
Rendering and simulation with PDDLGym (<https://github.com/tomsilver/pddlgym>)



Policies as Abstract Action Models



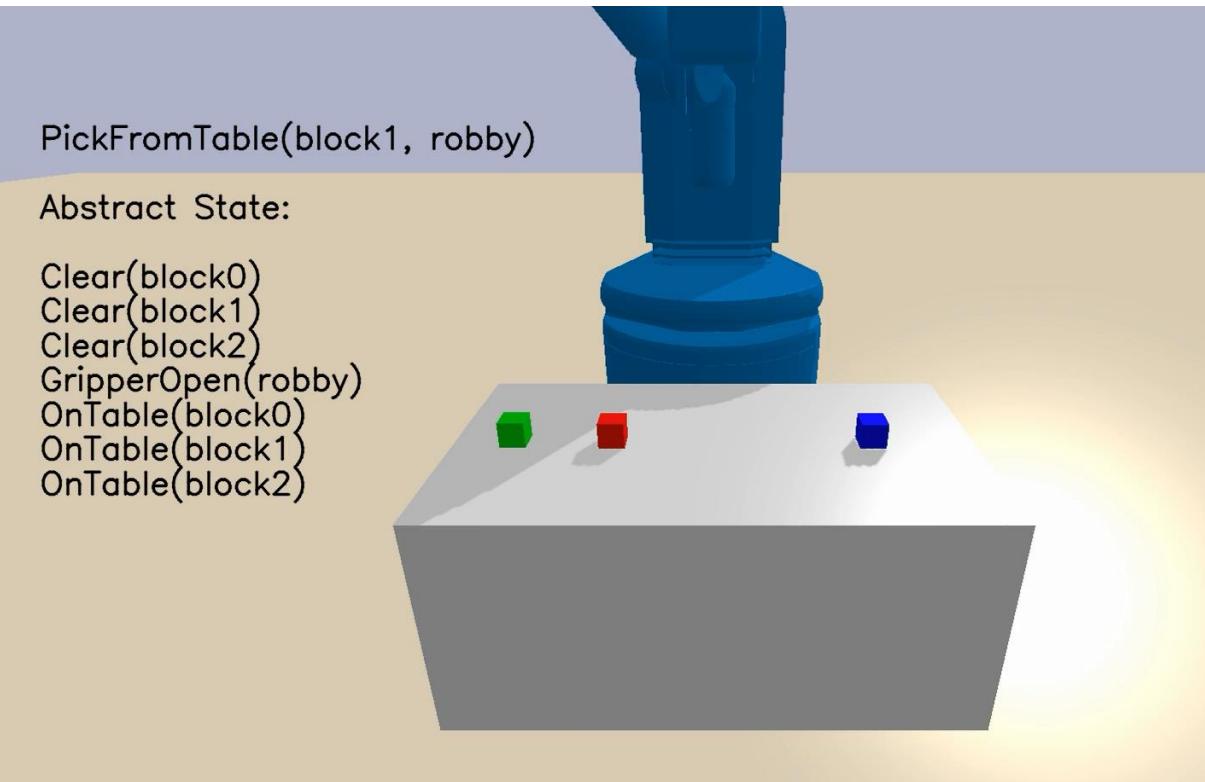
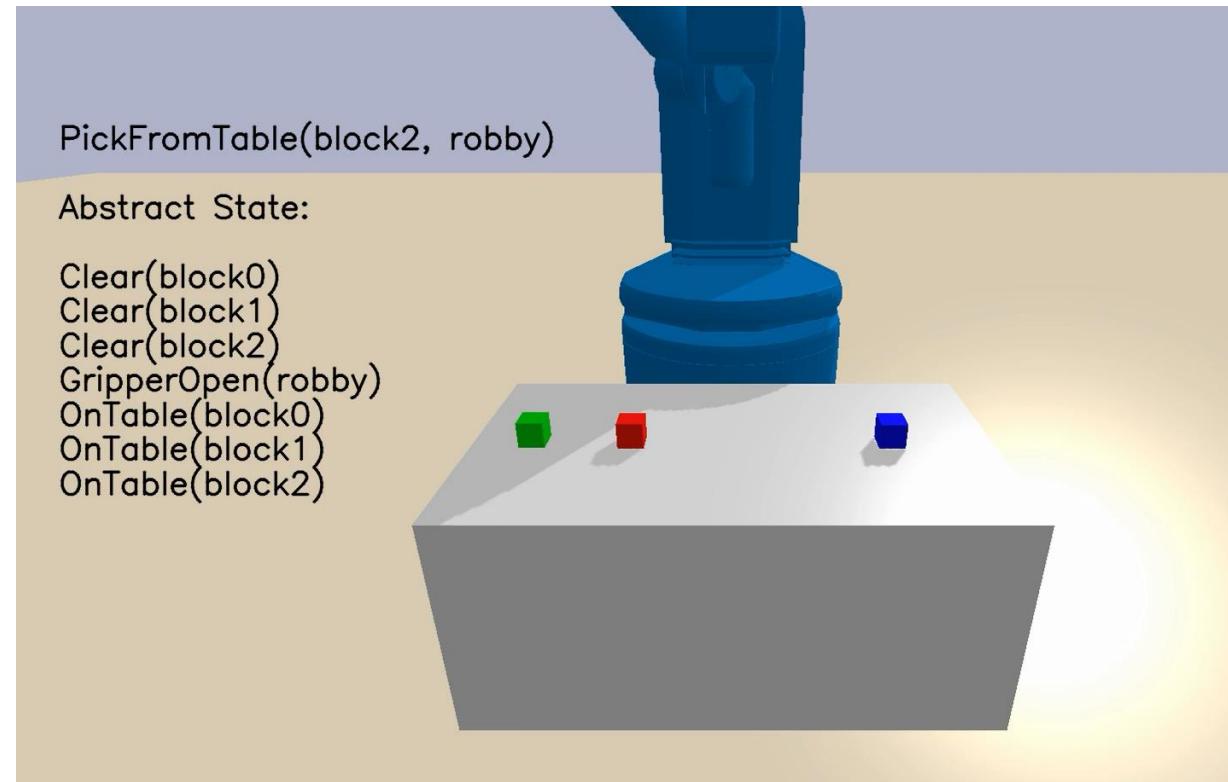
Same as
operator

```
def policyPickFromTable(state, ?b, ?r):  
    dx = (state[?b].x - state[?r].x)  
    dy = (state[?b].y - state[?r].y)  
    dz = (state[?b].z - state[?r].z)  
    return [dx, dy, dz]
```

Simplified example

The policy should *achieve* the operator effects
when the operator preconditions hold

Example Policy Executions

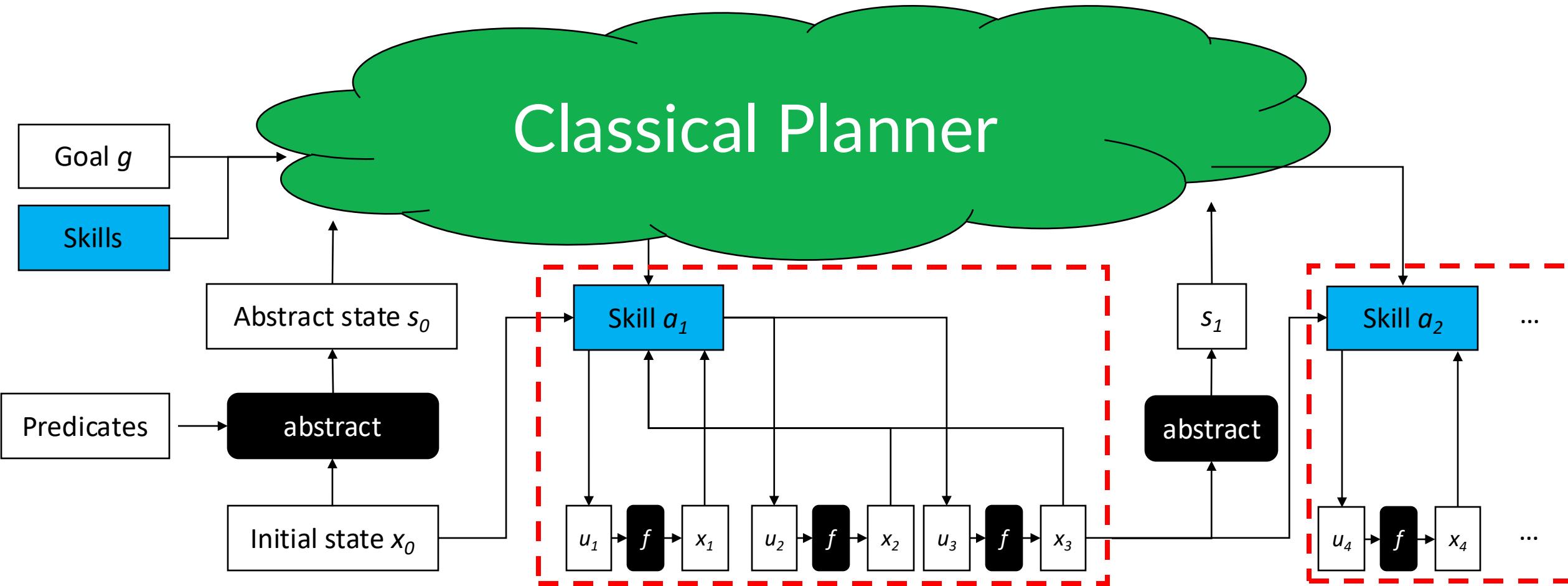


Skills: abstract actions that bring the robot from one abstract state to another

What abstract state transition?

How should I get there?

A skill has an **operator** and a **policy**

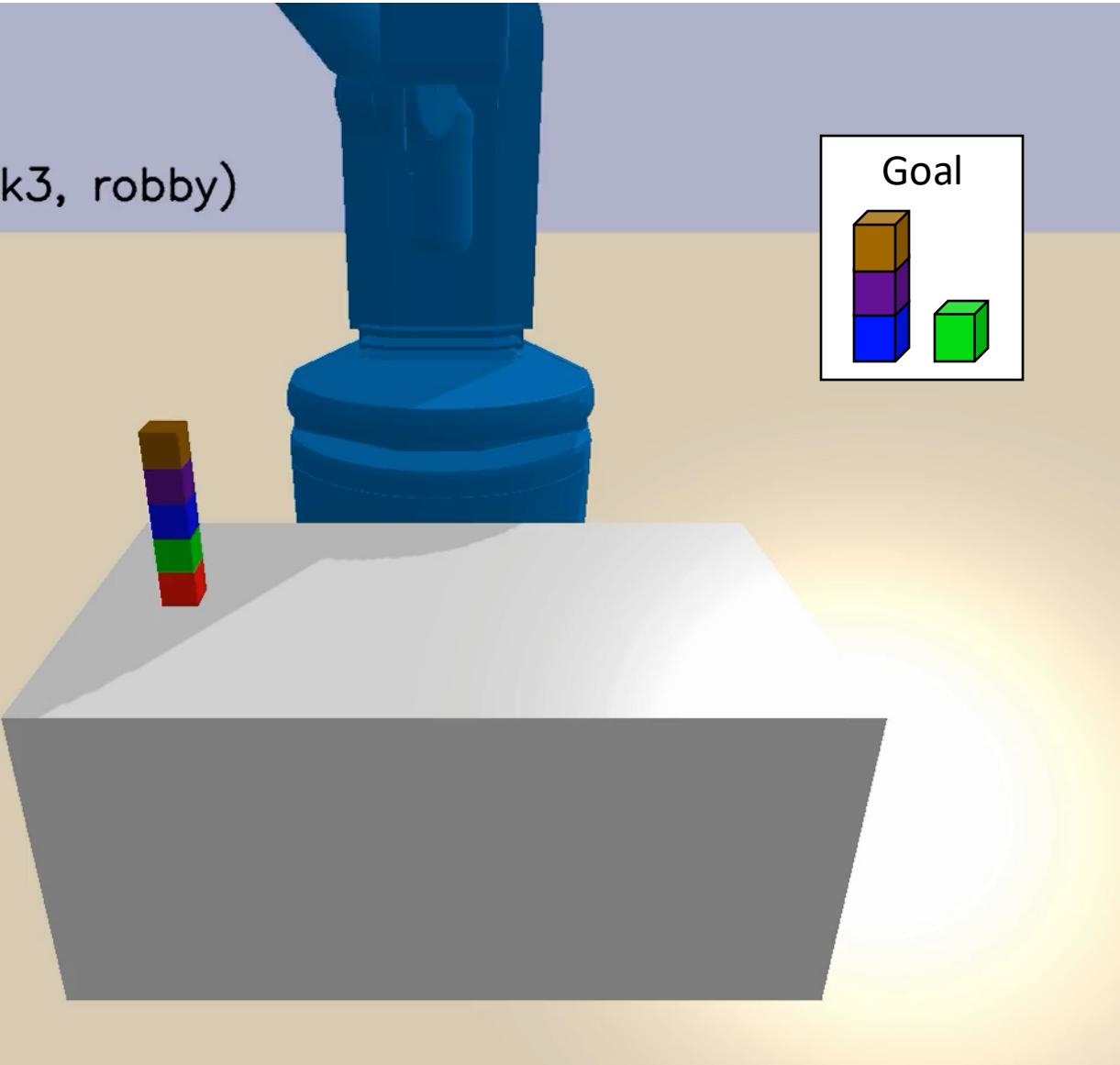


Action abstraction via skills

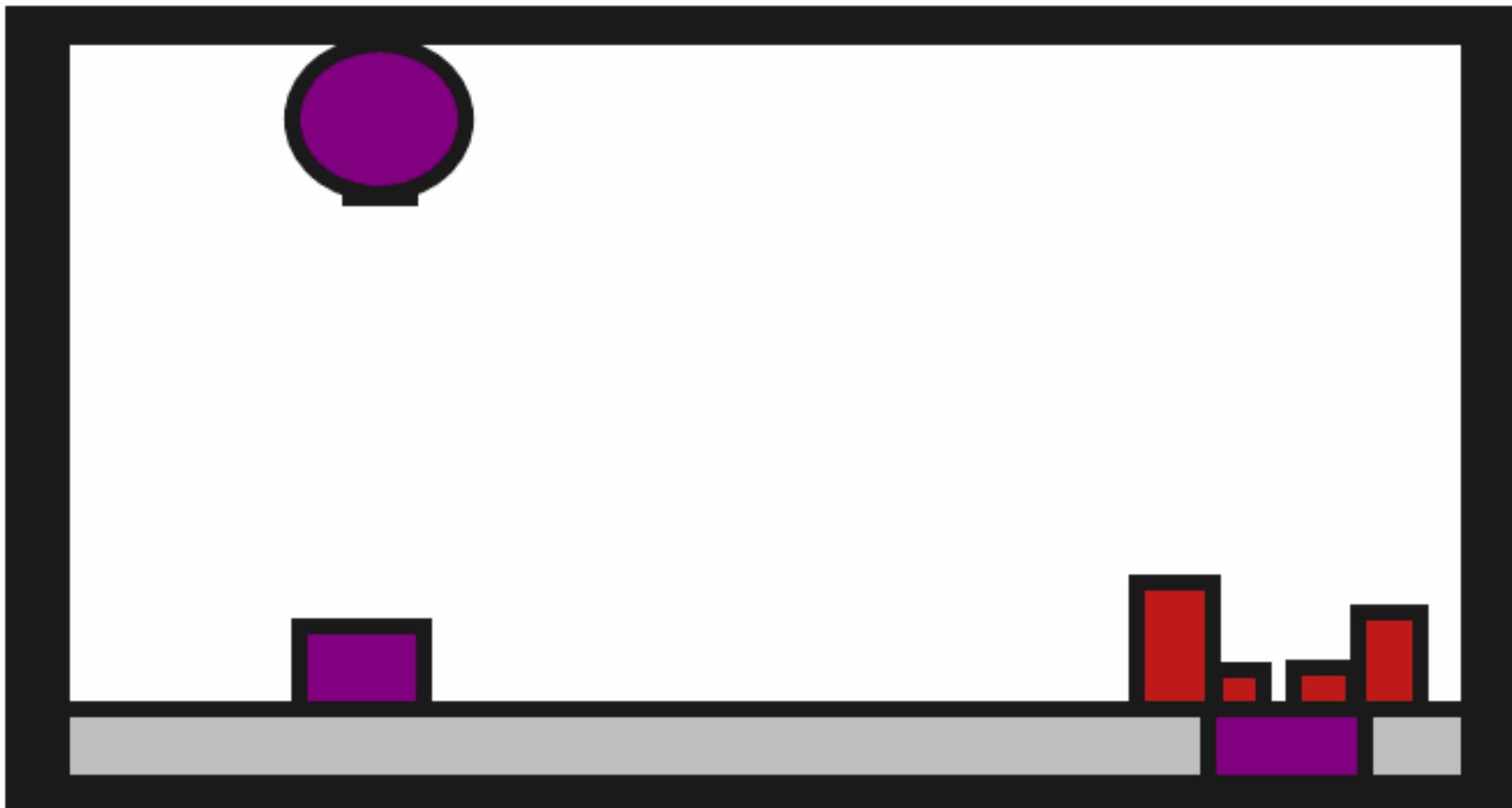
Unstack(block4, block3, roby)

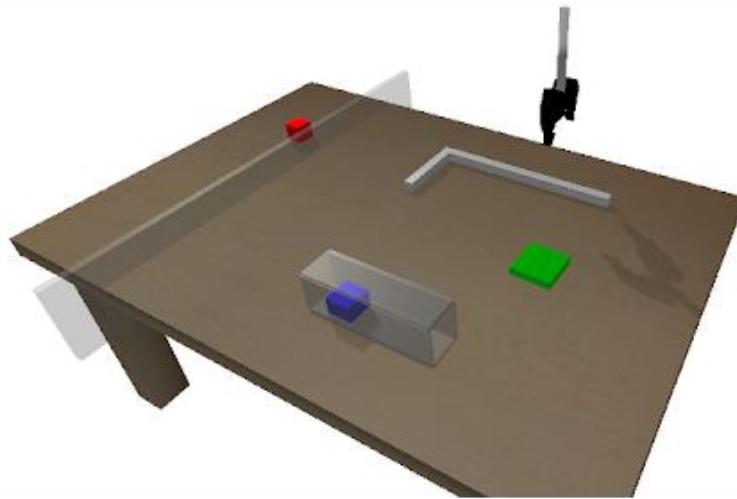
Abstract State:

Clear(block4)
GripperOpen(roby)
On(block1, block0)
On(block2, block1)
On(block3, block2)
On(block4, block3)
OnTable(block0)



The abstractions might be liars...





“Deep Affordance Foresight: Planning Through What Can Be Done in the Future.” Danfei Xu, Ajay Mandlekar, Roberto Martin-Martin , Yuke Zhu, Silvio Savarese and Li Fei-Fei. ICRA 2021.

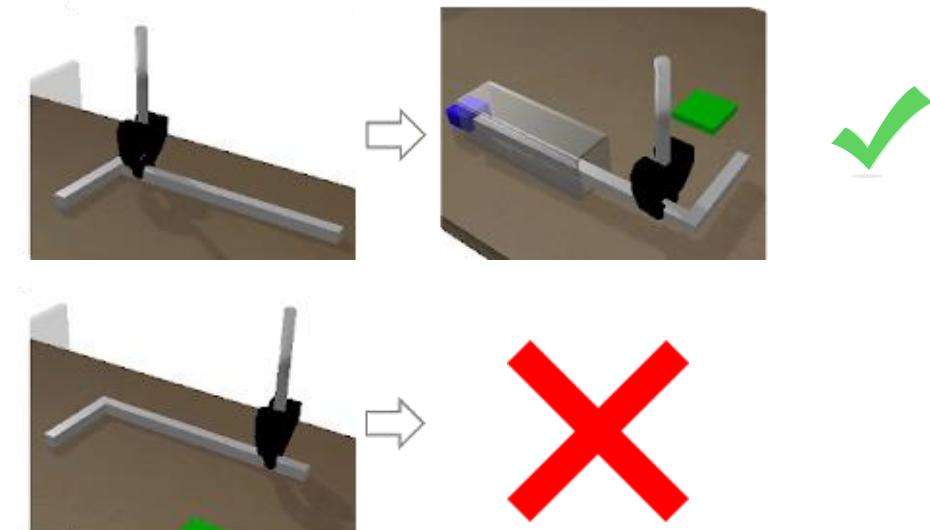
Operator-PushOutOfTube:

Arguments: [, ,]

Preconditions: {Holding(,),
InTube()}

Add effects: {OutOfTube()}

Delete effects: {InTube()}



Possible Conclusions from this Example

1. Insufficient predicates → learn new predicates

HoldingBottom, HoldingTop, etc.

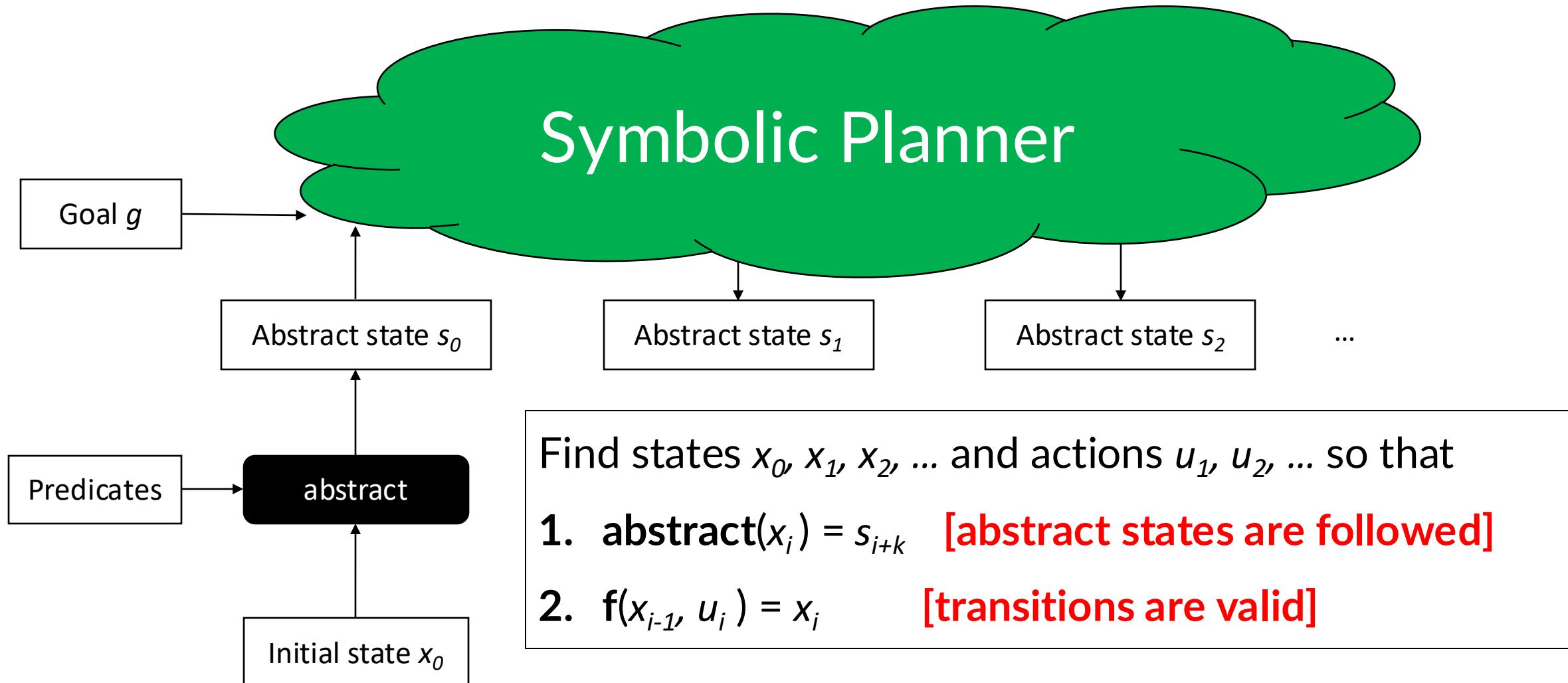
2. Insufficient policies → learn better policies

Put down the tool and regrasp if needed

3. Insufficient planner → be less trusting of the abstractions

View abstractions as *guidance* for low-level planning

Bilevel Planning: View Abstractions as Constraints



Logic-Geometric Programming

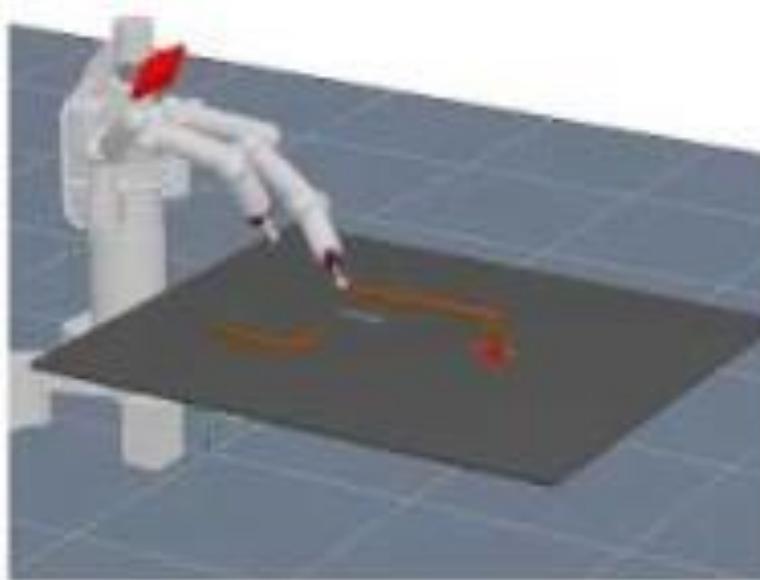
Toussaint (2015)

Found Solutions

The only goal specification is to touch the red ball with either hand, or to let the blue tail touch the green patch.

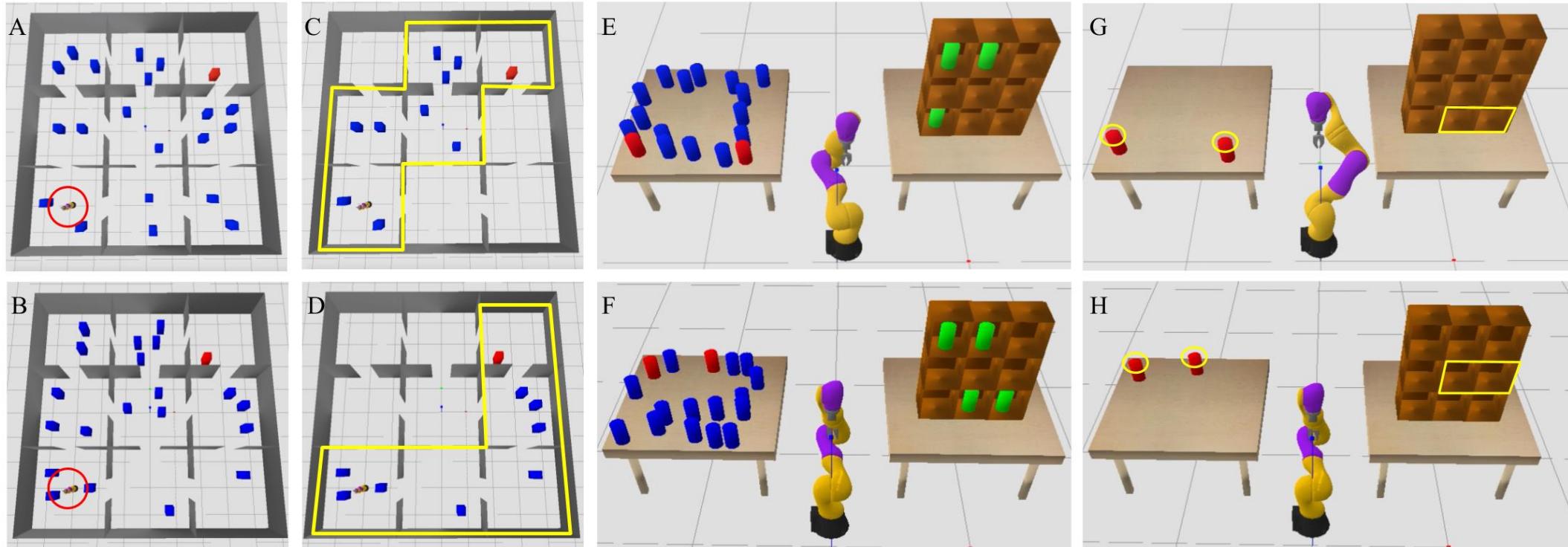
The system has full knowledge of the scene, including the geometric shapes of all objects, but knows of no further semantics specific to objects.

The double-heal, in analogy to Batty the Crow



Toussaint, Alan, Smith, Tenenbaum:
Differentiable Physics and Stable Modes for
Real-World Manipulation Planning (RSS 2015)

Side Note: Constraints Can Help Planning in Multiple Ways



From Chitnis*, Silver*, et al. (2020)

Logic-Geometric Programming

Toussaint (2015)

Possible issues:

1. Optimizing in low-level state and action space remains hard for long-horizon problems

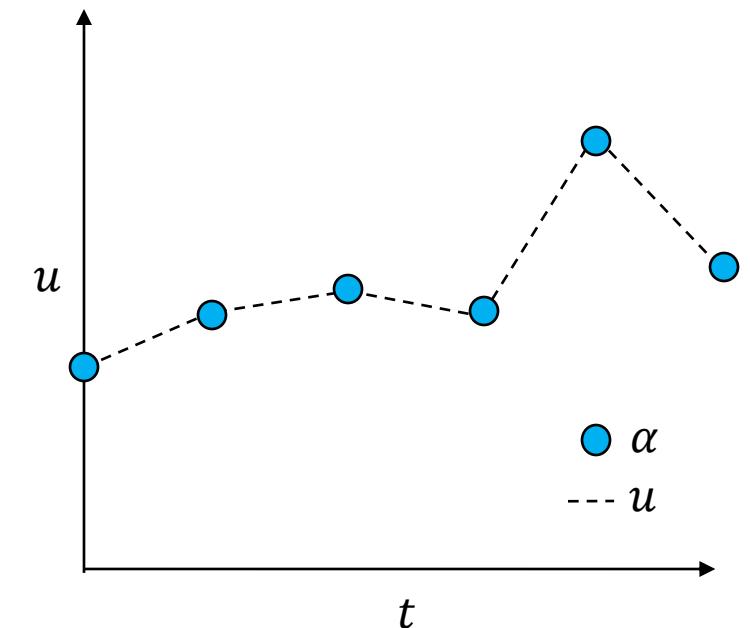
General Trick 2: Optimize Splines Instead

Optimizing $(u_0, u_1, \dots, u_{H-1})$ is slow for large H

Instead, optimize over lower-dimensional α :

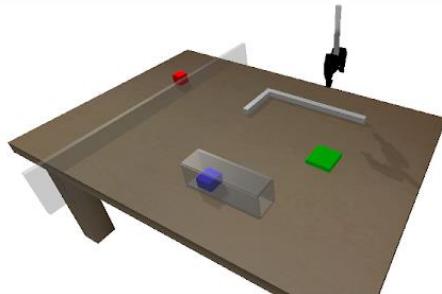
$$u_t = f(t, \alpha) \text{ where } \alpha \in \mathbb{R}^d \text{ and } d \ll mH$$

Common: think of α as “action waypoints” and interpolate between them

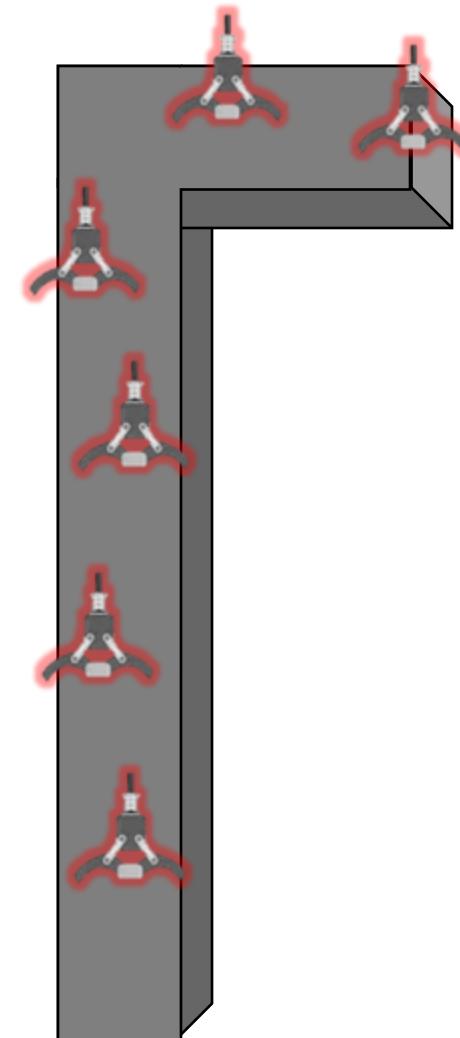


For example, linear splines (see right)

Parameterized Skill Policies



Different Parameters



Operator-PickTool:

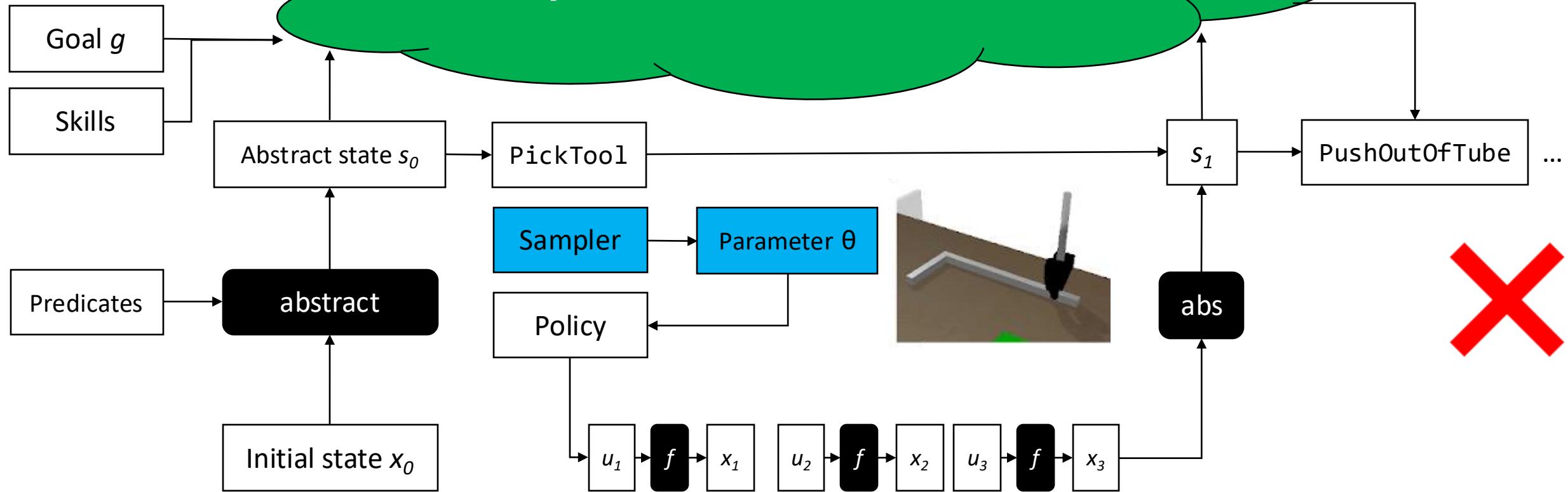
Arguments: [,]

Preconditions: {GripperOpen()}

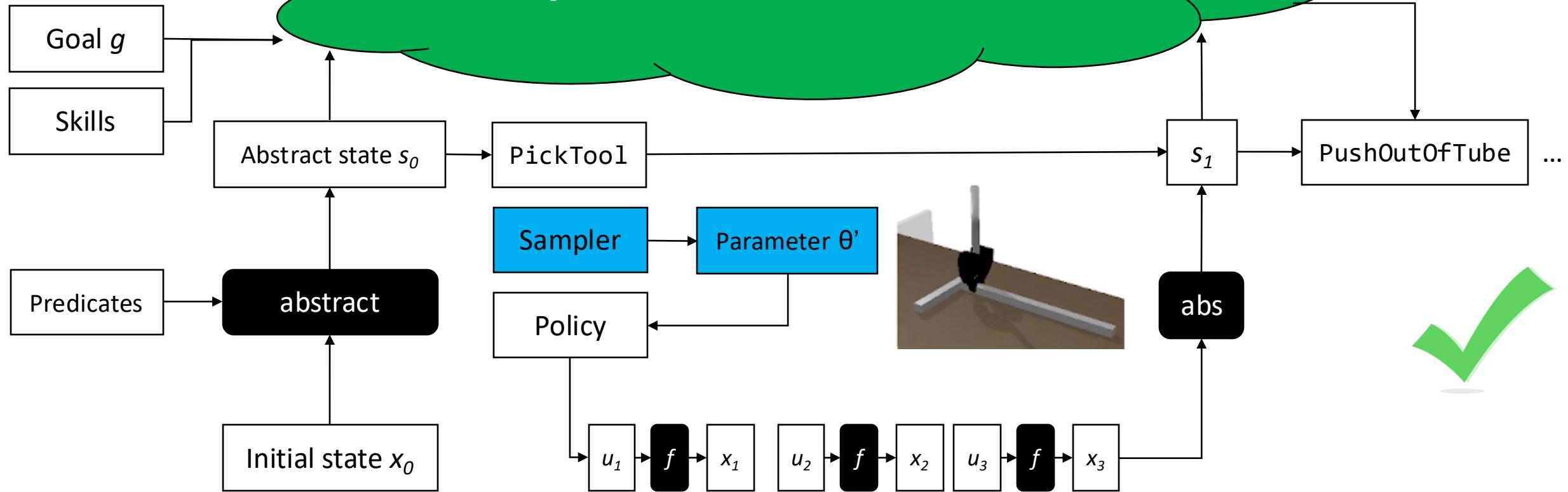
Add effects: {Holding(,)}

Delete effects: {GripperOpen()}

Symbolic Planner



Symbolic Planner



Logic-Geometric Programming

Toussaint (2015)

Possible issues:

1. Optimizing in low-level state and action space remains hard for long-horizon problems
2. We still may have “contract disputes”...

The abstractions may be
pathological liars...

An abstract plan may not be
refinable at all!

Coffee Domain

Abstract Plan

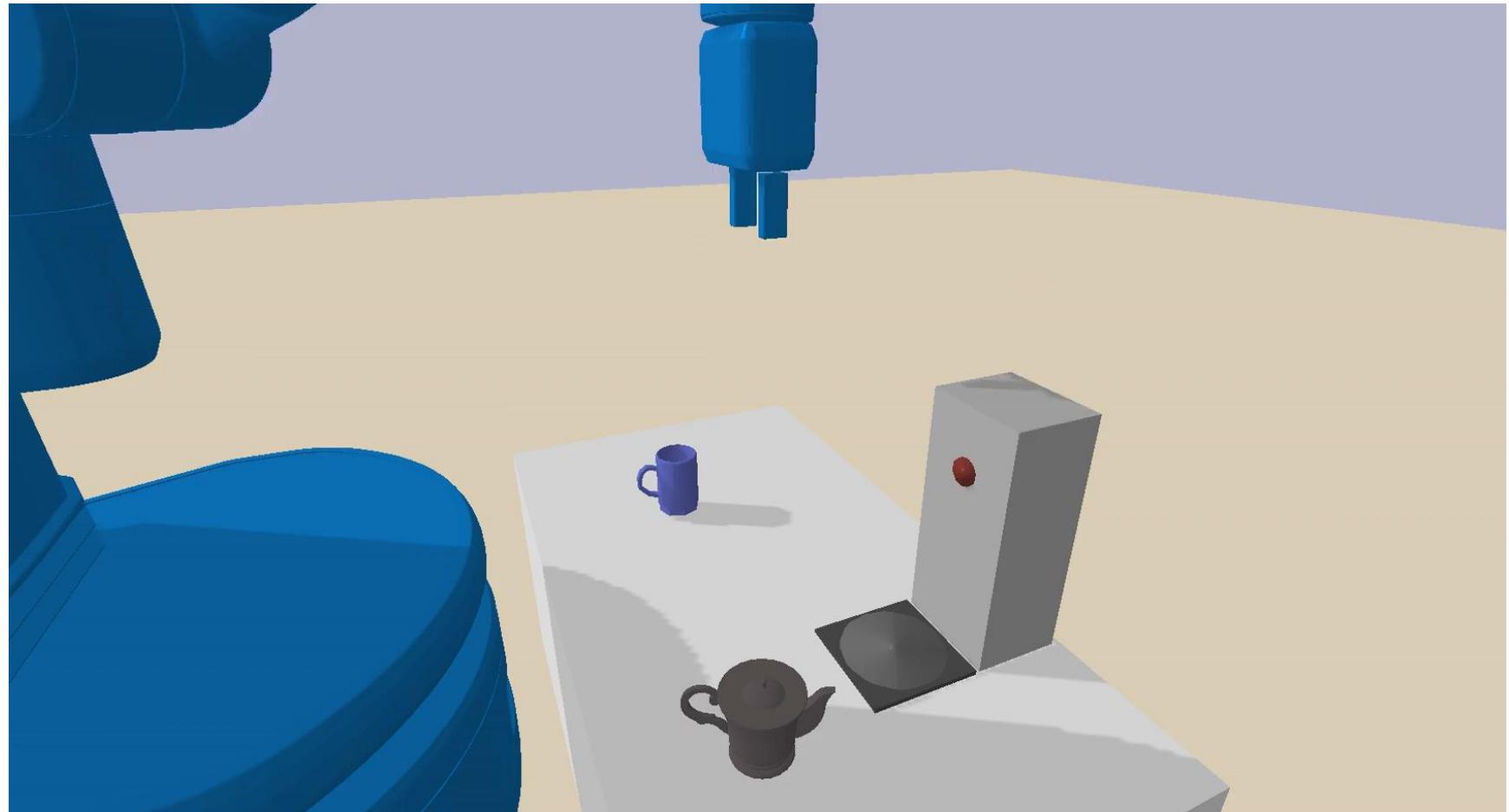
Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup



We need a different abstract plan!

Coffee Domain

Abstract Plan

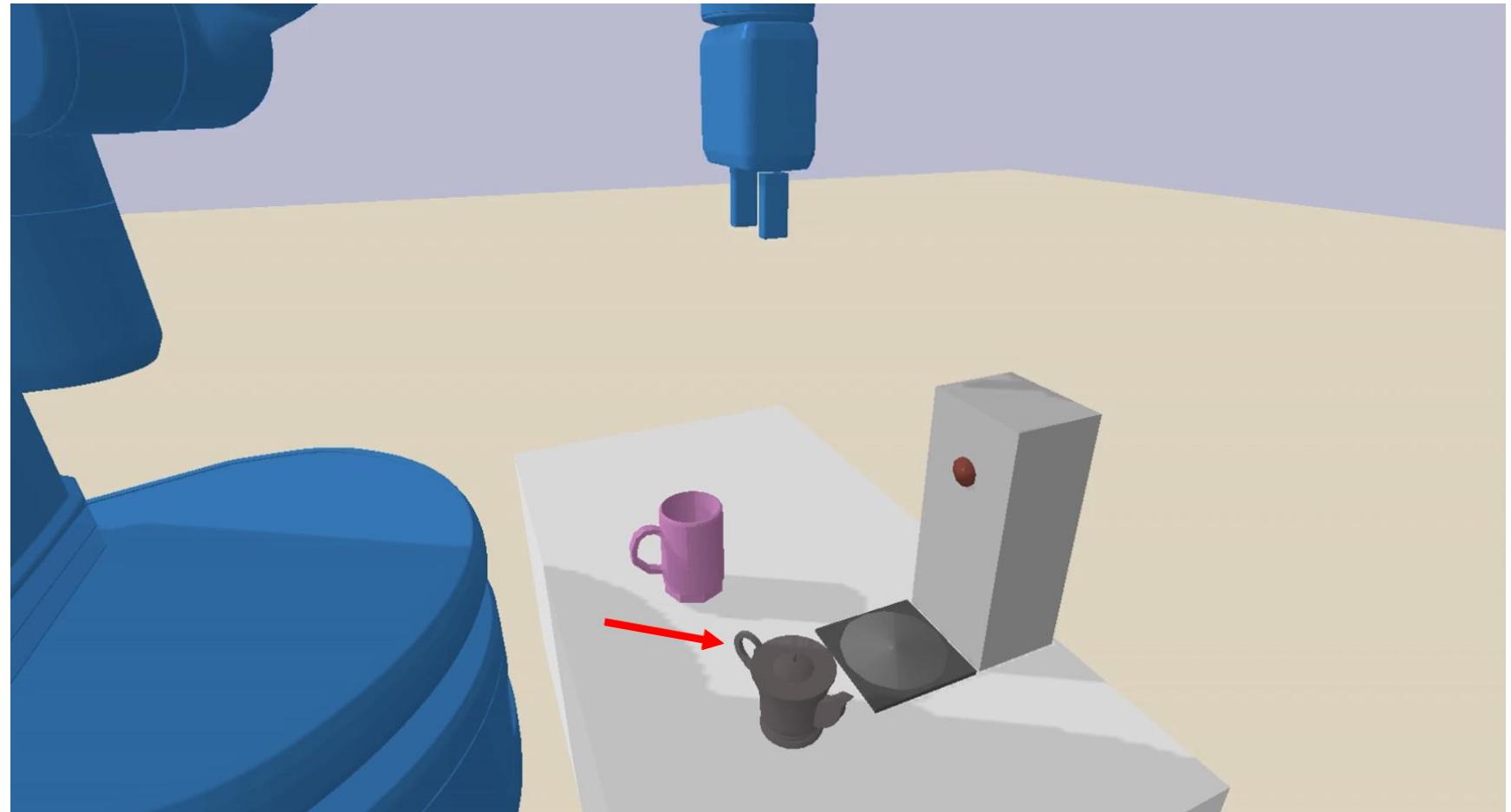
Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup



Coffee Domain

Abstract Plan

Rotate pot

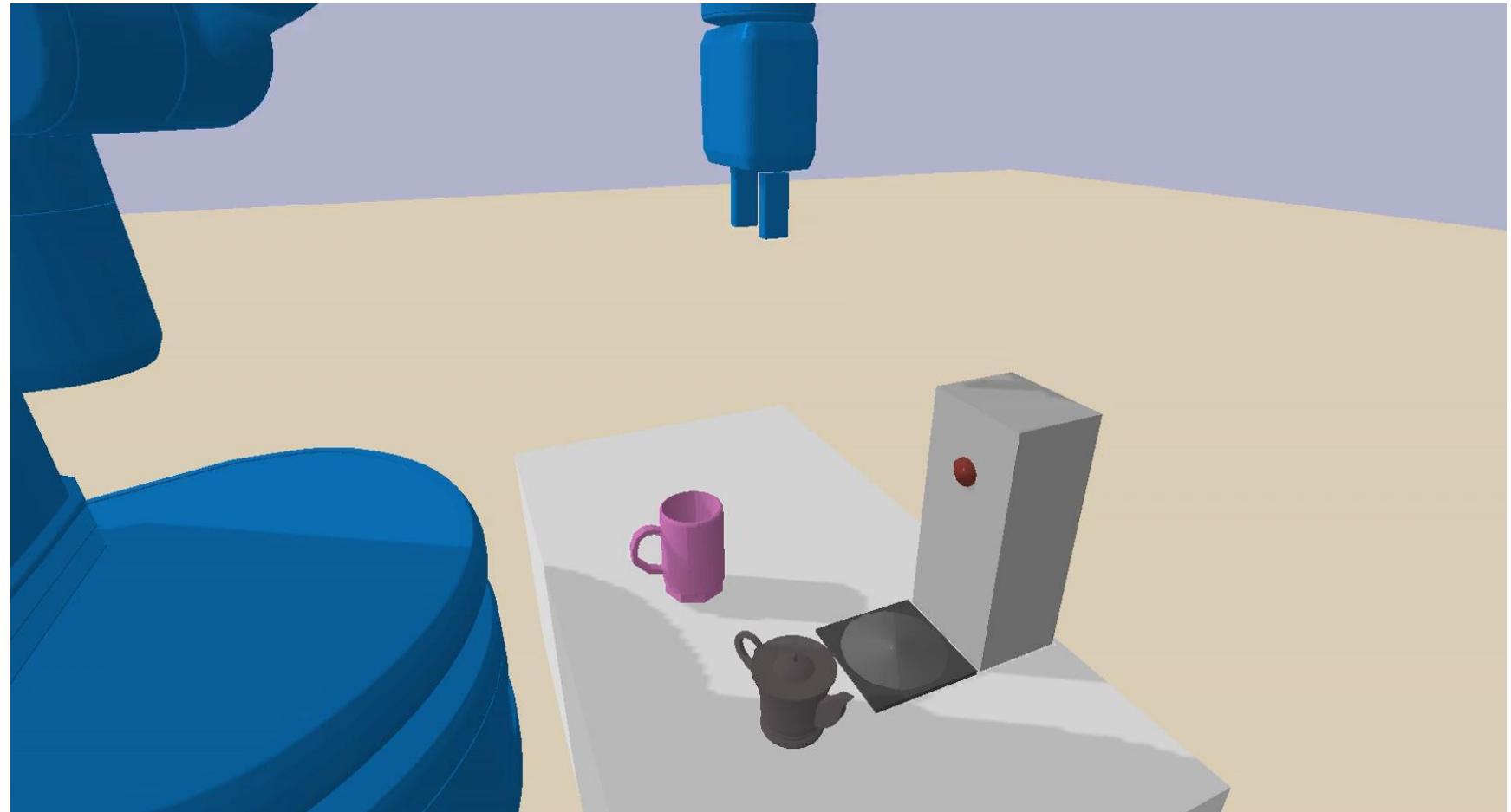
Grasp handle

Place on plate

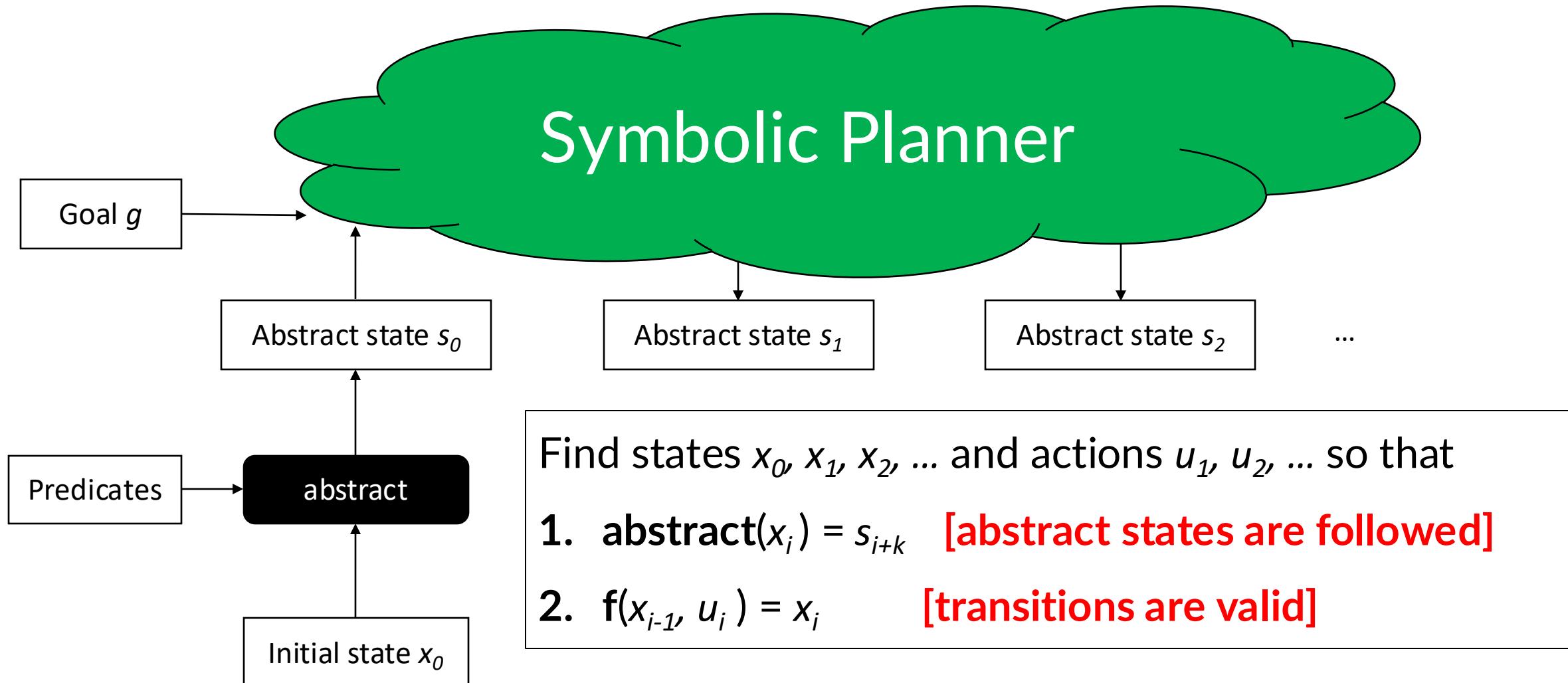
Turn plate on

Pick up pot

Pour into cup



One Remedy: Try Multiple Abstract Plans



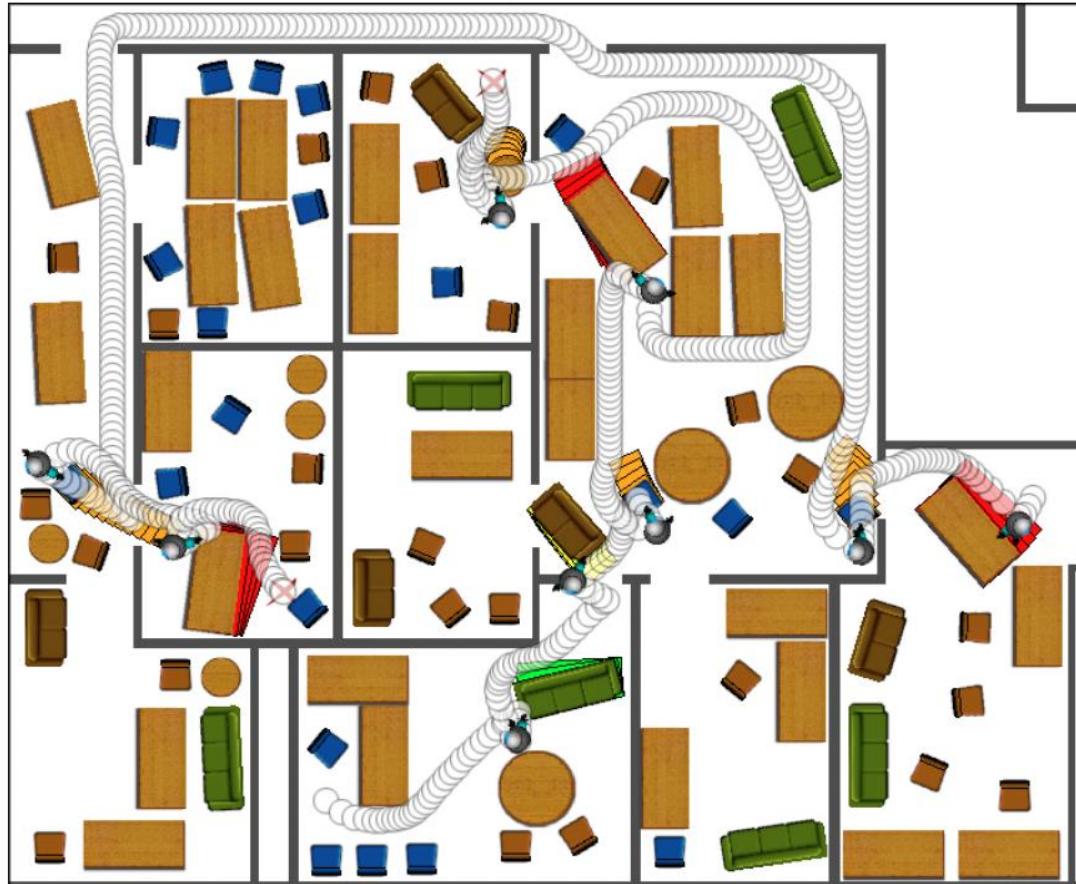
Better: Use Feedback from Refinement Failure to Influence Task Planning

Example: “Navigation Among
Moveable Obstacles (NAMO)”

(Stilman & Kuffner 2004)

(Simplified explanation)

When a collision is encountered
during refinement, make a plan
to move the collided object out
of the way first



Another Approach: Sample then Search

- Extends ideas from sample-based motion planning (RRT, PRM)
- Instead of sampling just robot configurations, sample...
 - Candidate grasps
 - Candidate positions of objects
 - ...
- Sample in a factored and conditional way
 - Example: conditioned on a future object position, sample a grasp
 - Conditioned on a grasp, sample a robot base position
 - Can sample “forward”, “backward”, or any-which-way in time
- See: PDDLStream (Garrett et al. 2018)

Summary: Task and Motion Planning (TAMP)

- Plan with state and action abstractions
- Use relational abstractions (e.g., PDDL) when possible
- Beware that the abstractions might be “liars”
 - TAMP is most interesting in this case!
- Use the abstractions as “guidance” for planning
- Closely related to hierarchical RL