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Let’s Play a Review Game

Bar trivia rules
• Break up into teams of 3-5
• Give your team a great name
• I will ask questions
• You will discuss quietly with your team
• Write down your answer
• Hold it up when I say so
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Robot

Square Obstacle

Side Length: 2 inches

Goal

1 inch

1 inch

1 inch

1 inch

Question 1

What is the expected number of 
nodes that RRT will create in 
the example on the right?

1. Less than 5
2. Between 5 and 25
3. Between 25 and 100
4. Greater than 100 / no limit



Question 2

Consider a POMDP with 2 states, 2 observations, and 2 actions.

Suppose that our initial belief state is uniform. 

Is it possible that the corresponding Belief MDP has an infinite 
number of reachable states?
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Question 3

True or False: if a POMDP has a deterministic transition 
distribution and a deterministic observation distribution, then 
there exists some policy for the agent that would lead to an 
absolutely certain belief state (some state has 100%).
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Question 4

True or False: for any classical planning problem, if a solution 
exists, then a solution also exists in the delete relaxed problem.
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Question 5

True or false: in classical planning, given an optimal heuristic, the 
number of nodes expanded by A* is equal to the number of 
actions in the output plan.
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Question 6

Which of the following is true about MCTS, but not about RTDP?

1. Requires only simulator access to MDP
2. Focuses on “promising” parts of AODAG
3. Adds one new state node at each iteration
4. Backpropagates values after each iteration
5. Uses rollout heuristic to estimate leaf node values
6. Uses greedy policy to select nodes to expand 

You may select multiple.
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Question 7

Which of the following bandit exploration strategies are 
guaranteed to try all arms infinitely often in the limit?

1. Uniform random
2. Exploit only
3. Epsilon-greedy (for nontrivial epsilon)
4. UCB

You may select multiple.
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Question 8

Is there any bug in this 
code, and if so, which 
line?
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Question 9

What are the three kinds of MDP time horizons?
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Question 10 (Tiebreak)

List any algorithms we have covered in this course. The most 
recalled wins.
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Recap and Preview

Last time: planning in continuous state and action spaces

This time: same problem setting, new tools: abstractions!
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Human Demo
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Random Actions
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Task Distribution



Example

State space: Robot config, block pose 
(8D)

Action space: Pose change, vacuum (5D)

Transition function: Apply action but 
disallow collisions (no change)

Cost function: -1 until block on target
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Which planners could we 
try? Would they work?



A Two-Level Hierarchy
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𝒳 𝒳𝑓: 𝒳𝒰 𝒰

Low-level state space

Low-level action space

Low-level transition 
model



A Two-Level Hierarchy
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𝒳 𝒳𝑓: 𝒳

𝒮 𝒮

𝒰 𝒰

Ψ Ψ

Low-level state space

State abstraction 
models

Abstract state space



A Two-Level Hierarchy
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𝒳 𝒳𝑓: 𝒳

𝒮 𝒮

𝒰 𝒰

Ψ Ψ

𝐹: 𝒜
Abstract state space

Abstract action space

Abstract transition model



A Two-Level Hierarchy
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𝒳 𝒳𝑓: 𝒳

𝒮 𝒮

𝒰 𝒰

Ψ Ψ

𝐹: 𝒜

Π

Abstract action space

Action abstraction 
models



A Two-Level Hierarchy
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𝒳 𝒳𝑓: 𝒳

𝒮 𝒮

𝒰 𝒰

Ψ Ψ

𝐹: 𝒜

Π

Maybe it’s easier 
to plan up here!



Abstractions in Example
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𝒳

𝒮

Ψ

Robot config, block pose

HoldingBlock: bool
BlockOnTarget: bool 𝒮𝒜

“pick”
“place”

𝒳 𝒳𝒰 𝒰

Π

Pose change, vacuum (5D)

Action refinementState abstraction
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State Abstraction with Predicates

Tom Silver - Princeton University - 2025 26

State

Abstract state

abstract

x y z size

rob 0.63 0.11 0.94 0.5

b0 0.74 0.11 0.00 0.1

b1 0.75 0.10 0.20 0.1

b2 0.50 0.11 0.00 0.1

b3 0.99 0.12 0.00 0.1

b4 0.51 0.11 0.20 0.1

OnTable(b2), On(b4, b2)
OnTable(b0), On(b1, b0)
OnTable(b3)

def classifyOnTable(state, ?block):
    state[?block].z < 1e-5

def classifyOn(state, ?top, ?bot):
    (state[?top].z – state[?bot].z –
     state[?bot].size) < 1e-5 &
    (state[?top].x – state[?bot].x) < 1e-5 &
    (state[?top].y – state[?bot].y) < 1e-5 &



Arguments
  List of typed variables
Preconditions
   What must be true in order
   to use this operator?
Add/Delete Effects
  How is the abstract state
  changed by this operator?

Operators as Abstract Actions
Operator-PickFromTable:

Arguments: [?b - block, ?r - robot]

Preconditions: {GripperOpen(?r),
           OnTable(?b)}

Add effects: {Holding(?b)}
Delete effects: {GripperOpen(?r),
           OnTable(?b)}
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Abstract state s0

Abstract state s1

Abstract state s2

Abstract state s3

PickFromTable(b1, rob)

PickFromTable(b2, rob)

Unstack(b3, b4, rob)

An Abstract Transition Model

An abstract (partial) transition model
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Blocks World
Plan length: 28

Planning time: 0.12 s

Sokoban
Plan length: 167

Planning time: 0.25 s

Hanoi
Plan length: 579

Planning time: 0.22 s

Planning with Fast Downward (https://www.fast-downward.org)
Rendering and simulation with PDDLGym (https://github.com/tomsilver/pddlgym)
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If we have predicates and operators, then we can use 
very powerful off-the-shelf symbolic planners!

Why Predicates and Operators?

https://www.fast-downward.org/
https://www.fast-downward.org/
https://www.fast-downward.org/
https://github.com/tomsilver/pddlgym
https://github.com/tomsilver/pddlgym
https://github.com/tomsilver/pddlgym
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𝒳 𝒳𝑓: 𝒳

𝒮 𝒮

𝒰 𝒰

Ψ Ψ

𝐹: 𝒜

Π



Policies as Abstract Action Models
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PolicyState Action

The policy should achieve the operator effects
when the operator preconditions hold

Parameters

def policyPickFromTable(state, ?b, ?r):
    dx = (state[?b].x - state[?r].x)
    dy = (state[?b].y - state[?r].y)
    dz = (state[?b].z - state[?r].z)
    return [dx, dy, dz]

Same as 
operator Simplified example



Example Policy Executions
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Skills: abstract actions that bring the robot 
from one abstract state to another

A skill has an operator and a policy

What abstract 
state transition?

How should I get 
there?
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u1

Goal g

Initial state x0

abstract

Classical Planner

Action abstraction

Skills

Skill a1 

x1f u2 x2f u3 x3f

abstract

s1 Skill a2 

u4 x4f

…

…

Abstract state s0

Predicates

via skills
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Goal
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The abstractions might be liars…
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“Deep Affordance Foresight:  Planning Through What Can Be Done in the Future.” Danfei Xu, Ajay Mandlekar, Roberto 
Martin-Martin , Yuke Zhu, Silvio Savarese and Li Fei-Fei. ICRA 2021.
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Operator-PushOutOfTube:

Arguments: [  ,   ,  ]

Preconditions: {Holding(  ,  ),
   InTube(. )}

Add effects: {OutOfTube(  )
Delete effects: {InTube(  )}
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Possible Conclusions from this Example

1. Insufficient predicates → learn new predicates

HoldingBottom, HoldingTop, etc.

2. Insufficient policies → learn better policies

Put down the tool and regrasp if needed

3. Insufficient planner → be less trusting of the abstractions

View abstractions as guidance for low-level planning
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Bilevel Planning: View Abstractions as Constraints
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Goal g

Initial state x0

abstract

Symbolic Planner

Abstract state s0

Predicates
Find states x0, x1, x2, … and actions u1, u2, … so that

1. abstract(xi ) = si+k    [abstract states are followed]

2. f(xi-1, ui ) = xi                [transitions are valid]

Abstract state s1 Abstract state s2 …



Logic-Geometric Programming
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Toussaint (2015)



Side Note: Constraints Can Help Planning in Multiple 
Ways

From Chitnis*, Silver*, et al. (2020)
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Logic-Geometric Programming

Possible issues:
1. Optimizing in low-level state and action space remains hard for 

long-horizon problems
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Toussaint (2015)



General Trick 2: Optimize Splines Instead
Optimizing (𝑢0, 𝑢1, … , 𝑢𝐻−1) is slow for large 𝐻
Instead, optimize over lower-dimensional 𝛼: 

𝑢𝑡 = 𝑓 𝑡, 𝜶  where 𝜶 ∈ ℝ𝑑  and 𝑑 ≪ 𝑚𝐻

Common: think of 𝛼 as “action waypoints” and 
interpolate between them

For example, linear splines (see right)
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𝑡

𝑢

𝛼
𝑢

Recall from last lecture



Parameterized Skill Policies

Operator-PickTool:

Arguments: [  ,   ]

Preconditions: {GripperOpen(  )}

Add effects: {Holding(  ,  )
Delete effects: {GripperOpen(  )}

Different Parameters
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u1

Goal g

Initial state x0

Abstract state s0

abstract

Symbolic Planner

Predicates

Skills

Policy

x1f u2 x2f u3 x3f

abs

s1 PushOutOfTube …PickTool

Sampler Parameter θ
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u1

Goal g

Initial state x0

Abstract state s0

abstract

Symbolic Planner

Predicates

Skills

Policy

x1f u2 x2f u3 x3f

abs

s1 PushOutOfTube …PickTool

Sampler Parameter θ’
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Logic-Geometric Programming

Possible issues:
1. Optimizing in low-level state and action space remains hard for 

long-horizon problems

2. We still may have “contract disputes”…
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Toussaint (2015)
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The abstractions may be 
pathological liars…

An abstract plan may not be 
refinable at all!



Coffee Domain

Abstract Plan

51

Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup



Coffee Domain

Abstract Plan

52

Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup

We need a different 
abstract plan!



Coffee Domain

Abstract Plan

53

Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup

Rotate pot



One Remedy: Try Multiple Abstract Plans
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Goal g

Initial state x0

abstract

Symbolic Planner

Abstract state s0

Predicates
Find states x0, x1, x2, … and actions u1, u2, … so that

1. abstract(xi ) = si+k    [abstract states are followed]

2. f(xi-1, ui ) = xi                [transitions are valid]

Abstract state s1 Abstract state s2 …



Better: Use Feedback from Refinement 
Failure to Influence Task Planning
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Example: “Navigation Among 
Moveable Obstacles (NAMO)”

(Stilman & Kuffner 2004)

(Simplified explanation)
When a collision is encountered 
during refinement, make a plan 
to move the collided object out 
of the way first



Another Approach: Sample then Search

• Extends ideas from sample-based motion planning (RRT, PRM)
• Instead of sampling just robot configurations, sample…

• Candidate grasps
• Candidate positions of objects
• …

• Sample in a factored and conditional way
• Example: conditioned on a future object position, sample a grasp
• Conditioned on a grasp, sample a robot base position
• Can sample “forward”, “backward”, or any-which-way in time

• See: PDDLStream (Garrett et al. 2018)
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Summary: Task and Motion Planning (TAMP)

• Plan with state and action abstractions

• Use relational abstractions (e.g., PDDL) when possible

• Beware that the abstractions might be “liars”
• TAMP is most interesting in this case!

• Use the abstractions as “guidance” for planning

• Closely related to hierarchical RL
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