Planning with
Hierarchy and Abstraction

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025

Let’s Play a Review Game

Bar trivia rules

* Break up into teams of 3-5

* Give your team a great name

* | will ask questions

* You will discuss quietly with your team
* Write down your answer

* Hold it up when | say so

Question 1 inh < | Gl

What is the expected number of
nodes that RRT will create in
the example on the right?

Square Obstacle

1. Less than 5 Side Length: 2 inches
2. Between 5 and 25

3. Between 25 and 100

4. Greater than 100 / no limit

Tom Silver - Princeton University - Fall 2025 3

Question 2

Consider a POMDP with 2 states, 2 observations, and 2 actions.
Suppose that our initial belief state is uniform.

|s it possible that the corresponding Belief MDP has an infinite
number of reachable states?

Question 3

True or False: if a POMDP has a deterministic transition
distribution and a deterministic observation distribution, then
there exists some policy for the agent that would lead to an
absolutely certain belief state (some state has 100%).

Question 4

True or False: for any classical planning problem, if a solution
exists, then a solution also exists in the delete relaxed problem.

Question 5

True or false: in classical planning, given an optimal heuristic, the
number of nodes expanded by A* is equal to the number of
actions in the output plan.

Question 6
Which of the following is true about MCTS, but not about RTDP?

Requires only simulator access to MDP

Focuses on “promising” parts of AODAG

Adds one new state node at each iteration
Backpropagates values after each iteration

Uses rollout heuristic to estimate leaf node values
Uses greedy policy to select nodes to expand

S A

You may select multiple.

Question /

Which of the following bandit exploration strategies are
guaranteed to try all arms infinitely often in the limit?

Uniform random

Exploit only

Epsilon-greedy (for nontrivial epsilon)
UCB

=

You may select multiple.

Question 8

|s there any bug in this
code, and if so, which
line?

Tom Silver

def value_iteration(
states: List[State],
actions: List[Action],
transitions: Dict[Tuple[State, Action], List[Transition]],
gamma: float = 0.95,
theta: float = le-6,

) -> Dict[State, float]:
"""Returns state values.
V={s: 0.0 for s in states}

while True:
delta = 0.0
for s 1n states:
g_values = []
for a in actions:
exp_return = 0.0
for p, s_next, r in transitions[(s, a)l:
exp_return += p * r + gamma * V[s_next]
g_values.append(exp_return)

v_new = max(q_values) if q_values else V[s]
delta = max(delta, abs(v_new - V[s]))
V[s] = v_new

if delta < theta:
break

return V

Question 2

What are the three kinds of MDP time horizons?

Question 10 (Tiebreak)

List any algorithms we have covered in this course. The most
recalled wins.

Planning with
Hierarchy and Abstraction

Tom Silver
Robot Planning Meets Machine Learning

Princeton University
Fall 2025

Recap and Preview

Last time: planning in continuous state and action spaces

This time: same problem setting, new tools: abstractions!

Human Demo

Tom Silver - Princeton University - Fall 2025

15

Random Actions

Tom Silver - Princeton University - Fall 2025

16

Task Distribution

Tom Silver - Princeton University - Fall 2025

17

Which planners could we
Exa mple try? Would they work?

State space: Robot config, block pose
(8D)

Action space: Pose change, vacuum (5D)

Transition function: Apply action but
disallow collisions (no change)

Cost function: -1 until block on target

A Two-Level Hierarchy

A Two-Level Hierarchy

Abstract state space

State abstraction
models

A Two-Level Hierarchy

F:

)

Tom Silver - Princeton

A

University - 2025

I's

|

Abstract state space

Abstract action space

Abstract transition model

21

A Two-Level Hierarchy
F:|d A)

| Abstract action space
LIJ H LIJ Action abstraction
models

22

A Two-Level Hierarchy

F:

)

A

Y

10 Maybe it’s easier

| to plan up here!

Y

X

Abstractions in Example |:|

HoldingBlock: bool “pick”
BlockOnTarget: bool 5 “place”‘ﬂ 19
State abstraction | Y [] Action refinement

Robot config, block pose X —.—' X _._’ X

Pose change, vacuum (5D)

Tom Silver - Princeton University - 2025

State Abstraction with Predicates

OnTable(b2), On(b4, b2) def classifyOnTable(state, ?block):
Abstract state OnTable(b@), On(bl, bo) state[?block].z < 1le-5
5 OnTable(b3)

def classifyOn(state, ?top, ?bot):
(state[?top].z - state[?bot].z -
state[?bot].size) < le-5 &
(state[?top].x - state[?bot].x) < le-5 &
(state[?top].y - state[?bot].y) < le-5 &

063 011 0.94
b0 074 011 000 01
State bl 075 010 020 01
b2 050 0.11 000 01
b3 099 012 000 01
b4 051 011 0.20 01

Operators as Abstract Actions

Arguments

List of typed variables

Preconditions

What must be true in order
to use this operator?

Ad
I_

d/Delete Effects
ow is the abstract state

C

hanged by this operator?

Tom Silver - Prince

Operator-PickFromTable:
Arguments: [?b - block, ?r - robot]

Preconditions: {GripperOpen(?r),
OnTable(?b)}

Add effects: {Holding(?b)}
Delete effects: {GripperOpen(?r),
OnTable(?b)}

ton University - 2025 27

An Abstract Transition Model

Abstract state s,

Abstract state s;

Abstract state s,

Abstract state s;

An abstract (partial) transition model

Tom Silver - Princeton University - 2025

28

Why Predicates and Operators?

If we have predicates and operators, then we can use
very powerful off-the-shelf symbolic planners!

i Al |

][]

Blocks World Sokoban Hanoi
Plan length: 28 Plan length: 167 Plan length: 579
Planning time: 0.12 s Planning time: 0.25 s Planning time: 0.22 s

Planning with Fast Downward ()
Rendering and simulation with PDDLGym ()

Tom Silver - Princeton University - 2025 29

https://www.fast-downward.org/
https://www.fast-downward.org/
https://www.fast-downward.org/
https://github.com/tomsilver/pddlgym
https://github.com/tomsilver/pddlgym
https://github.com/tomsilver/pddlgym

Policies as Abstract Action Models

State Action def policyPickFromTable(state, ?b, ?r):
dx = (state[?b].x - state[?r].x)
dy = (state[?b].y - state[?r].y)
dz = (state[?b].z - state[?r].z)

Parameters
return [dx, dy, dz]
Same as . -
operator Simplified example

The policy should achieve the operator effects
when the operator preconditions hold

Example Policy Executions

PickFromTable(block2, robby)
Abstract State:

PickFromTable(block1, robby)
Abstract State:

Clear(blockO Clear(blockO

Cleargblock1 Cleargblock1

Clear(block2 Clear(block2
GripperOpen(robby) GripperOpen(robby)
OnTable(blockO OnTable(blockO &
OnTable(block1 OnTable(block1
OnTable(block2 OnTable(block2

Tom Silver - Princeton University - 2025

32

Skills: abstract actions that bring the robot
from one abstract state to another

A skill has an operator and a policy

Classical Planner

Goal g
i ,

Abstract state s,

n
~
—— | — 1

Initial state x,

N I S S - -
i

Action abstraction via skills

Tom Silver - Princeton University - 2025 34

Unstack(block4, block3, robby)

Abstract State:
Clear(block4

GripperOpen(robby)

On(block1, blockO
On(block2, block1
On(block3, block2
On(block4, block3
OnTable(block0)

Tom Silver - Princeton University - 2025

Goal

35

Tom Silver - Princeton University - 2025

36

Tom Silver | Princeton | 2025

37

“Deep Affordance Foresight: Planning Through What Can Be Done in the Future.” Danfei Xu, Ajay Mandlekar, Roberto
Martin-Martin , Yuke Zhu, Silvio Savarese and Li Fei-Fei. ICRA 2021.

Tom Silver | Princeton | 2025 38

Operator-PushOutOfTube:

Arguments: [T, .2 ,]

Preconditions: {Holding([,.%.),
InTube (@)}

Add effects: {OutOfTube ()
Delete effects: {InTube (@)}

e
=%

Tom Silver | Princeton | 2025

39

Possible Conclusions from this Example

1. Insufficient predicates — learn new predicates

HoldingBottom, HoldingTop, etc.

2. Insufficient policies = learn better policies

Put down the tool and regrasp if needed

. Insufficient planner = be less trusting of the abstractions

View abstractions as guidance for low-level planning

Tom Silver | Princeton | 2025

40

Bilevel Planning: View Abstractions as Constraints

Goal g

|

Abstract state s,

Predicates

Initial state x,

Symbolic Planner

Abstract state s; Abstract state s,

Find states x, x,, x,, ... and actions u,, u,, ... so that
1. abstract(x;) =s,,, [abstract states are followed]
2. f(x., u)=x [transitions are valid]

1

Tom Silver | Princeton | 2025 41

Logic-Geometric Programming

Toussaint (2015)

Found Solutions The dautie Heon, In sntlogy 10 Dary o Crew

The arty gnal specifestom o o ineh e rosd
Sal anh tither hand o e bt e Biuw
P 0O R Pty S

The syatem At Nl krowindgr of the e
P i T gean etk Wagren O W) abes s
IR S OF m NI SeYMILSs SSecie W
sherty

Lantis, Man. 208, Nsiasan
(MY O v AT s Av? SLalwe Mgy I
Nan L v N st Manvweg 1SS Mie

Tom Silver | Princeton | 2025

Side Note: Constraints Can Help Planning in Multiple
Ways

From Chitnis*, Silver*, et al. (2020)

Tom Silver | Princeton | 2025

43

Logic-Geometric Programming

Toussaint (2015)

Possible issues:

1. Optimizing in low-level state and action space remains hard for
long-horizon problems

Recall from last lecture

General Trick 2: Optimize Splines Instead

Optimizing (uy, U4, ..., uy_q1) is slow for large H
Instead, optimize over lower-dimensional «a:

u, = f(t, @) where ¢ € R* and d « mH

Common: think of a as “action waypoints” and
interpolate between them

For example, linear splines (see right)

Parameterized Skill Policies

Operator-PickTool:

Arguments: [[, 2.]

Preconditions: {GripperOpen(,-.L) }

Add effects: {Holding([,.%.)
Delete effects: {GripperOpen(,£.)}

Tom Silver | Princeton | 2025

Different Parameters

46

Symbolic Planner

| |

PickTool PushOutOfTube

Goal g :l—v
Skills

\ 4
A

Abstract state s,

Predicates

A

Policy

Initial state x, us *ﬁ—» X, | | u, *ﬁ—»

Tom Silver | Princeton | 2025 47

Symbolic Planner

| |

Goal g :l—v
Skills

PickTool S; PushOutOfTube

\ 4
A

Abstract state s,

Predicates

A

Policy

Initial state x, us *ﬁ—» X, | | u, *ﬁ—»

Tom Silver | Princeton | 2025 48

Logic-Geometric Programming

Toussaint (2015)

Possible issues:

1. Optimizing in low-level state and action space remains hard for
long-horizon problems

2. We still may have “contract disputes”...

The abstractions may be
pathological liars...

An abstract plan may not be
refinable at all!

Abstract Plan

Grasp handle
Place on plate

Turn plate on

Pick up pot

Pour into cup

Coffee Domain

51

N e Coffee Domain

Abstract Plan

x Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup

52

Abstract Plan

Rotate pot
Grasp handle

Place on plate

Turn plate on

Pick up pot

Pour into cup

Coffee Domain

53

One Remedy: Try Multiple Abstract Plans

Symbolic Planner

Goalg H———

|

Abstract state s, Abstract state s; Abstract state s,

Find states x, x,, x,, ... and actions u,, u,, ... so that

Predicates

1. abstract(x;) =s,,, [abstract states are followed]

2. f(x., u)=x [transitions are valid]

1

Initial state x,

Tom Silver | Princeton | 2025 54

Better: Use Feedback from Refinement

Failure to Influence Task Planning

Example: “Navigation Among
Moveable Obstacles (NAMO)”

(Stilman & Kuffner 2004)

(Simplified explanation)

When a collision is encountered
during refinement, make a plan

to move the collided object out
of the way first

Tom Silver | Princeton | 2025

Another Approach: Sample then Search

« Extends ideas from sample-based motion planning (RRT, PRM)

 [nstead of sampling just robot configurations, sample...

« Candidate grasps
» Candidate positions of objects

« Sample in a factored and conditional way
« Example: conditioned on a future object position, sample a grasp
» Conditioned on a grasp, sample a robot base position
« Can sample “forward”, “backward”, or any-which-way in time

e See: PDDLStream (Garrett et al. 2018)

Summary: Task and Motion Planning (TAMP)

* Plan with state and action abstractions

« Use relational abstractions (e.g., PDDL) when possible

« Beware that the abstractions might be “liars”
 TAMP is most interesting in this case!

« Use the abstractions as “guidance” for planning

* Closely related to hierarchical RL

	Slide 1: Planning with Hierarchy and Abstraction
	Slide 2: Let’s Play a Review Game
	Slide 3: Question 1
	Slide 4: Question 2
	Slide 5: Question 3
	Slide 6: Question 4
	Slide 7: Question 5
	Slide 8: Question 6
	Slide 9: Question 7
	Slide 10: Question 8
	Slide 11: Question 9
	Slide 12: Question 10 (Tiebreak)
	Slide 13: Planning with Hierarchy and Abstraction
	Slide 14: Recap and Preview
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Example
	Slide 19: A Two-Level Hierarchy
	Slide 20: A Two-Level Hierarchy
	Slide 21: A Two-Level Hierarchy
	Slide 22: A Two-Level Hierarchy
	Slide 23: A Two-Level Hierarchy
	Slide 24: Abstractions in Example
	Slide 25
	Slide 26: State Abstraction with Predicates
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Policies as Abstract Action Models
	Slide 32: Example Policy Executions
	Slide 33: Skills: abstract actions that bring the robot from one abstract state to another
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Possible Conclusions from this Example
	Slide 41: Bilevel Planning: View Abstractions as Constraints
	Slide 42: Logic-Geometric Programming
	Slide 43: Side Note: Constraints Can Help Planning in Multiple Ways
	Slide 44: Logic-Geometric Programming
	Slide 45: General Trick 2: Optimize Splines Instead
	Slide 46: Parameterized Skill Policies
	Slide 47
	Slide 48
	Slide 49: Logic-Geometric Programming
	Slide 50
	Slide 51: Coffee Domain
	Slide 52: Coffee Domain
	Slide 53: Coffee Domain
	Slide 54: One Remedy: Try Multiple Abstract Plans
	Slide 55: Better: Use Feedback from Refinement Failure to Influence Task Planning
	Slide 56: Another Approach: Sample then Search
	Slide 57: Summary: Task and Motion Planning (TAMP)

